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Pain is a multidimensional experience emerging from the flow of information betweenmultiple brain regions. A
growing body of evidence suggests that pathological pain causes plastic changes of various brain regions. Here,
we hypothesized that the induction of neuropathic pain alters distributed patterns of the resting-state brain
activity in animal models, and capturing the altered pattern would enable identification of neuropathic pain at
the individual level. We acquired micro-positron emission tomography with [18F]fluorodeoxyglucose (FDG
micro-PET) images in awake rats with spinal nerve ligation (SNL) and without (sham) (SNL group, n = 13;
sham group, n = 10). Multivariate pattern analysis (MVPA) with linear support vector machine (SVM)
successfully identified the brain with SNL (92.31% sensitivity, 90.00% specificity, and 91.30% total accuracy).
Predictive brain regions with increased metabolism were mainly located in prefrontal–limbic–brainstem areas
including the anterior olfactory nucleus (AON), insular cortex (IC), piriform cortex (PC), septal area (SA), basal
forebrain/preoptic area (BF/POA), amygdala (AMY), hypothalamus (HT), rostral ventromedial medulla (RVM)
and the ventral midbrain (VMB). In contrast, predictive regions with decreased metabolism were observed in
widespread cortical areas including secondary somatosensory cortex (S2), occipital cortex (OC), temporal cortex
(TC), retrosplenial cortex (RSC), and the cerebellum (CBL).We also applied the univariate approach and obtained
reduced prediction performance compared to MVPA. Our results suggest that developing neuroimaging-based
diagnostic tools for pathological pain can be achieved by considering patterns of the resting-state brain activity.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Neuropathic pain is a long term debilitating pain initiated by a
primary lesion to either the peripheral or central nervous system. It
has been shown that neuropathic pain causes plastic changes of various
brain regions (Jaggi and Singh, 2011). Thesefindings are in linewith the
emerging evidence that pain is a subjective and multidimensional
experience comprising sensory, cognitive, and emotional components
(Tracey, 2010).

Given the subjective nature of pain, there has been a high demand
for developing an objective biomarker in clinical, preclinical and basic
research. Brain imaging has great potential to complement current
subjective assessment of pain (Borsook et al., 2011; Dolgin, 2010;
Sakoglu et al., 2011). Indeed, a number of studies using functional brain
imaging have suggested potential biomarkers for pathological pain,
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however the development and validation of diagnostic tools for use still
remain to be achieved (Borsook et al., 2011).

Considering the multidimensional characteristics of pain, it would
be a more efficient strategy for developing biomarkers to focus on the
altered distributed patterns of the brain than single discriminative
regions (Borsook et al., 2011). Therefore, multivariate pattern analysis
(MVPA) techniques, which analyze distributed patterns of brain activity
by usingmachine learning classifiers, can bemore appropriate approach
than traditional univariate methods (See Supplementary Fig. 1) (Cox and
Savoy, 2003). While most of imaging studies on pain have focused on the
evoked responses of the brain to external stimuli, in recent years, a
growing body of studies has been performed on resting-state brain with
pathological pain (Cauda et al., 2010; Napadow et al., 2010; Seminowicz
et al., 2012). Understanding how diseases affect the resting-state brain
has great potential for not only deciphering the disease mechanism, but
also for the development of biomarkers for brain disorders (Sakoglu
et al., 2011).

Here, we hypothesized neuropathic pain would induce plastic
changes of distributed brain regions, and that capturing the altered
pattern of the resting-state brain activity would enable identification
of neuropathic pain. To address our hypothesis, we usedmicro-positron
emission tomography with [18F]fluorodeoxyglucose (FDG micro-PET)
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and spinal nerve ligation (SNL)models of neuropathic pain. FDGmicro-
PET imaging allowed us to investigate the whole brain metabolic
activity in awake animals. By applying MVPA, we determined the
brain with SNL from that of sham animals at the individual level. Linear
support vector machine (SVM) was employed as a classifier. Prediction
performance was evaluated by leave-one-out cross-validation and
compared with the performance of univariate approach using the
same brain regions. To our knowledge, this is the first study validating
the neuroimaging biomarker for animalmodels of pain at the individual
level.

Materials and methods

All experiments were performed in accordance with the NIH
guidelines for Animal Research and approved by the Experimental
Animal Care and Ethics Committee of Seoul National University, Seoul,
Korea.

Animals and surgery

Adult, male Sprague-Dawley rats (Samtako CO., Osan, Korea)
weighing 260–320 g were used. Spinal nerve ligation (SNL) was
performed as described previously (Kim and Chung, 1992). Briefly,
the right L5 spinal nerve was exposed and tightly ligated with 4-0
silk under isoflurane (2.5% for induction and 2% for maintenance)
anesthesia (n=13). Sham surgery was identical to SNL, except that
the nerves were not ligated (n=10).

Behavioral tests

To confirm the successful induction of neuropathic pain, all ratswere
tested for mechanical allodynia of the right hindpaw 2 days before
surgery, and on postoperative days 1, 4, 7, and 14. Rats were placed in
transparent acryl cages on a wire mesh floor, and allowed to acclimate
for 20 min before tests. Mechanical allodynia was assessed using von
Frey filaments. The filaments were applied to the plantar surface of
the hindpaw and brisk withdrawal or flinching response was regarded
as positive. There are many methods to determine the withdrawal
thresholds. Here, we applied the up–down method (Dixon, 1980). A
series offilaments (0.4, 0.7, 1.2, 2.0, 3.6, 5.5, 8.5 and 15.0g)were applied
to the hindpaw. Starting with a filament in the middle of the series,
weaker or stronger filaments were applied based on the prior response
(positive or negative). The resulting response pattern was used to
calculate the 50% likelihood of a paw withdrawal response (50%
threshold) (Chaplan et al., 1994). Rats which showed thresholds
less than 4 g in 1 day or 4 days after surgery were considered to be
SNL model. Rats not to be considered to be SNL model were excluded
from the analyses. Repeated-measures ANOVA followed by Bonferroni's
t-test was conducted for comparison between two groups.

Image acquisition

Micro-PET images of the rat brain were acquired 12–14 days after
SNL surgery. All rats were deprived of food for 12–18 h before the
scanning to enhance FDG uptake in the brain (Fueger et al., 2006).
Rats were placed in acryl cages (13 cm × 10 cm × 10.5 cm) on a wire
mesh floor, and allowed to acclimate for 30min before FDG injection.
Afterwards, FDG (500 μCi/100 g in 0.5 ml) was administered via tail
vein injection under light isoflurane anesthesia and the rats were
moved back to theplastic cages. Ratswokeuppromptly fromanesthesia
and stayed in the plastic cages in a quiet room with a dim light for
60min uptake period. After uptake period, a 60 min static acquisition
was performed in 3D mode under isoflurane (1.5%) anesthesia. The
acquired images reflected the metabolic activity of the awake rat brain
before the saturation of FDG uptake. Image acquisition was performed
using a dedicated small-animal PET scanner (eXplore VISTA, GE
healthcare), which provides 4.6 cm axial and 6.7 cm transaxial field
of view, with spatial resolution of 1.6 mm in full width at half
maximum. 3D volumetric images were reconstructed using VISTA
OSEM algorithm in a 128 × 128 matrix with a pixel width of
0.385mm and a slice thickness of 0.770mm.

Image preprocessing

Data preprocessing was carried out in MATLAB (Mathworks)
using statistical parametric mapping (SPM2) software (http://
www.fil.ion.ucl.ac.uk/spm/). First, 15 FDG micro-PET images of naïve
rats were coregistered to the T2-weighted MR template provided by
Schweinhardt et al. (2003), which was placed into stereotaxic space,
and then averaged to make a FDG rat brain template. All individual
micro-PET images were spatially normalized using this template and
resliced (0.2mm×0.2mm×0.2mm).Micro-PET imageswere smoothed
with a Gaussian kernel (full-width at half-maximum (FWHM) =
1.2 mm) to increase the statistical power. Proportional scaling was
used for global normalization of voxel values between scans (global
mean to 50, gray matter threshold of 0.8).

Multivariate pattern analysis (MVPA)

MVPA uses machine learning algorithms that can extract pattern
information from multi-dimensional space and classify data samples
into different classes. In general, datasets are divided into training sets
and test sets, and classifiers are derived by learning patterns during
the training sets. Trained classifiers are functions that take the values
of features (voxels in neuroimaging setting) from the data samples and
predict the class that the samples belong to. The prediction performance
of classifiers is evaluated using test datasets. In our study, all MVPA
analysis was performed by in-house software developed using MATLAB
(Mathworks).

Feature selection
Because not every voxels represent the altered pattern of the

resting-state brain during SNL, feature selection was performed
prior to developing a classifier. Feature selection enables classifier
to more accurately predict classes by removing uninformative features
(diminishing noise). Moreover, this process provides information about
the discriminative brain regions between conditions. Features were
selected using two-sample t-tests between two groups in training sets.
A series of p-values (0.000005, 0.00001, 0.00005, 0.0001, 0.0005, 0.001,
0.005, 0.01, 0.05, and 0.1) were applied to find optimal features yielding
the best performance of prediction. It is important that feature selection
was carried out using only training sets, excluding the possibility that
prediction of the test sample was guided by the information from
the test set itself. In order to avoid an outlier-driven effect on feature
selection, we repeated additional two-sample t-tests for selected feature
voxels. For these t-tests, each training sample was excluded in turn
and additional t-tests were repeated, resulting in the same number of
iteration as the training samples. Voxels that were significant for all
iterations were retained.

Linear support vector machine (SVM) classifier
Linear support vector machine (SVM) was employed as a classifier

for machine learning. SVM is a supervised machine learning algorithm
used for data classification (Bishop, 2007), in which classifier is
developed based on sample data by searching the optimal separating
hyperplane between classes in a high-dimensional space (training
phase), then the classifiers are used to predict the class to which
unseen data belongs (testing phase) (Pereira et al., 2009). The method
has previously been applied to various types of neuroimaging data
(Bendfeldt et al., 2012; Focke et al., 2012; Kloppel et al., 2008;
Vandenberghe et al., 2013).

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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Leave-one-out cross-validation
In order to evaluate the prediction performance of the classifier, we

used leave-one-out cross-validation. Each of the brain samples was
excluded from the analysis in turn, and for the remaining training
samples, SVM classifier was trained. The brain samples that were left
out then classified as being of SNL or sham animals. This procedure
was repeated until every sample once served as test samples (Fig. 1).
This validation procedure ensures trained classifiers to be tested
using unseen data that never been presented during training phases.
The performance of prediction was quantified using sensitivity
(the proportion of SNL animals correctly predicted), specificity (the
proportion of sham animals correctly predicted), and accuracy (the
proportion of total animals correctly predicted).
Postoperative time (days)

Fig. 2. Pain behaviors following spinal nerve ligation (SNL). Hindpawwithdrawal thresholds
to mechanical von Frey stimulation were assessed following SNL. Data are means ± SEM,
*p b 0.01 (one-way repeated measures ANOVA followed by Bonferroni's t-test).
Mapping discriminative brain regions
To identify the set of distributed brain regions with high dis-

criminating power, a series of selected feature voxels which were
derived from two-sample t-tests using different p-values were collected.
Among these voxels, only those yielding high accuracy (above 85%)were
mapped onto a MR template in stereotaxic space.
MVPA vs. univariate approach

To compare the prediction performance of MVPA with that of
traditional univariate approach, we repeated the validation protocol
(leave-one-out cross-validation tests) by adopting univariate analysis.
In univariate analysis, individual discriminative voxels were used for
prediction independently, instead of being considered simultaneously.
To exclude the possibility that the difference in performance is derived
from the different sizes of feature voxels, the same feature voxels with
MVPA were used for univariate analysis. For each voxel, a linear SVM
classifier was derived and the predictionwas conducted independently,
resulting in a prediction for each feature voxel. The overall prediction for
each sample was determined by comparing the number of voxels that
had positive and negative predictions.
Results

Induction of neuropathic pain by SNL

SNL (n = 13) and sham (n = 10) surgery was performed for
micro-PET imaging. Behavioral responses to mechanical stimuli
(mechanical allodynia)were assessed to confirm the successful induction
of neuropathic pain. Significant mechanical allodynia developed 1 day
after surgery and was maintained during the 2 weeks of observation
period (Fig. 2).
Fig. 1. Flowchart of MVPA classification of neuro
MVPA results

Prediction accuracies of SVM classifiers using different sets of feature
voxels with various p-values are shown in Fig. 3 and Table 1. SVM
classifier achieved the highest accuracy of 91.30% (92.31% sensitivity
and 90.00% specificity) at p-values of 0.00005, 0.0001, 0.0005, and 0.001
in leave-one-out cross-validation tests. The probability of a 91.30%
or better accuracy obtained by chance was calculated from binomial
distribution and the p-value was 0.000033.

Brain regions with high discriminative power

To investigate themost informative brain regions during neuropathic
pain, feature voxels yielding high accuracy (above 85%) in a series of
leave-one-out cross-validation tests were mapped onto a MR template
in stereotaxic space (Fig. 4). Overall, brain regions in the prefrontal–
limbic–brainstem areas showed increased metabolism; the anterior
olfactory nucleus (AON), insular cortex (IC), piriform cortex (PC), septal
area (SA), basal forebrain/preoptic area (BF/POA), amygdala (AMY),
hypothalamus (HT), rostral ventromedial medulla (RVM) and the ventral
midbrain (VMB). VMB includes the ventral tegmental area (VTA),
interpeduncular nucleus and substantia nigra. BF/POA includes the
ventral pallidum, horizontal limb of the diagonal band, vertical limb of
the diagonal band, medial septal nucleus, substantia innominata and the
preoptic area of hypothalamus. By contrast, brain regions with decreased
metabolism were observed in widespread cortical areas including the
secondary somatosensory cortex (S2), occipital cortex (OC), temporal
cortex (TC), retrosplenial cortex (RSC), and the cerebellum (CBL). Most
of the regions with high discriminative power were observed bilaterally
although the neuropathy was developed by unilateral nerve lesions.
pathic pain. SVM, support vector machine.

image of Fig.�2
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Fig. 3. Comparison of prediction performance between MVPA and univariate approach.
Feature voxels were selected by voxel-wise t-tests with a series of p-values. The accuracy
was measured by leave-one-out cross-validation test.

314 C.-E. Kim et al. / NeuroImage 86 (2014) 311–316
Comparison between MVPA and univariate approach

We compared the prediction performance between MVPA and
univariate approach. Performance evaluation with leave-one-out
cross-validation was repeated for univariate approach using the
same set of feature voxels with MVPA (see Materials and methods).
The univariate approach produced a substantial decrease of prediction
accuracy compared to MVPA (Fig. 3, Table 1), suggesting that
combinatorial activity patterns of multiple regions better represent
the neuropathic pain-induced changes of the brain and provide better
biomarkers than single regions.

Discussion

The present study demonstrated that neuropathic pain alters the
resting-state brain activity pattern in animal models and multivariate
approach using FDG micro-PET can successfully distinguish the animal
models of neuropathic pain from sham animals with high prediction
accuracy.

There is an urgent need for objective measurements of pain,
particularly in basic and preclinical studies. Most widely used reflex
methods for pain assessment in animal studies such as tail flick or
paw withdrawal have been criticized as they measure the function of
the spinal cord and brainstem but do not measure the function of the
cerebral cortex which is more important to the clinical assessments of
pain (Vierck et al., 2008). Most of the candidate drugs that work well
in animal studies have failed to be translated into clinical drugs, and
at least in part this failure is due to the commonly used behavioral
measures that cannot reflect the multi-dimensional nature of pain
(Dolgin, 2010). As a potential complimentary diagnostic tool for animal
models of pain, brain imaging techniques, have been used to examine
various types of pain models (Hess et al., 2007; Seminowicz et al.,
2009, 2012; Upadhyay et al., 2013). However, none of these studies
validated the feasibility of the brain imaging-based diagnosis of pain.
Our multivariate approach using FDG micro-PET, to our knowledge for
Table 1
Prediction performance of MVPA and univariate approaches. Sensitivity, specificity, and accura
feature voxels across leave-one-out trials.

p-Values 5 × 10−6 10−5 5 × 10−5 10−

# voxels 200 482 2761 507

Univariate approach Sensitivity (%) 76.92 76.92 76.92 76.9
Specificity (%) 70.00 70.00 80.00 80.0
Accuracy (%) 73.91 73.91 78.26 78.2

MVPA Sensitivity (%) 76.92 76.92 92.31 92.3
Specificity (%) 60.00 90.00 90.00 90.0
Accuracy (%) 69.57 82.61 91.30 91.3
the first time, demonstrates the feasibility of the brain imaging-based
diagnosis of pathological pain animal models. Furthermore, brain
imaging-based diagnosis could provide opportunities to study chronic
pain model that is difficult to evaluate the pain due to the lack of
motor response, such as phantom pain, headaches, and spinal cord
injury induced pain (Zhuo, 2011).

MVPA is an increasingly popular analytical technique in neuroimaging
field, because it allows the detection of subtle differences between
conditions by considering spatially distributed patterns of brain activity
instead of focusing on each voxel in isolation. The technique has been
widely applied to brain imaging experiments that identifies the mental
representation (Haxby et al., 2001; Lee et al., 2011; Sapountzis et al.,
2010; Spiridon and Kanwisher, 2002) or disease states (Ecker et al.,
2010; Kloppel et al., 2008; Modinos et al., 2012) in the brain.

In the current study, we showed MVPA achieved higher prediction
accuracy than conventional univariate approach in identifying
neuropathic pain. Our finding is consistent with the previous studies
demonstrating that considering the multiple brain regions enabled
more accurate decoding of pain perception (Brodersen et al., 2012;
Brown et al., 2011). These studies showed that combined activity
of whole brain patterns, or ‘pain matrix’ regions led to a more accurate
prediction of experimentally induced pain than any single brain regions,
supporting the multidimensional characteristic of pain perception and
distributed representation in the brain. Our results, moreover, suggest
that pathological pain-induced plastic changes of the brain are also
represented across the distributed brain areas. Taken together, these
findings strongly suggest that future development of neuroimaging-
based biomarker for clinical pain should focus on the distributed patterns
of the brain activity rather than specific single regions.

We found a set of brain regions responsible for the SVM classifier's
high discriminating performance between neuropathic pain animals
and sham animals. Overall, predictive brain regions with increased
metabolism were mainly located in prefrontal–limbic–brainstem
networks, which engage in cognitive/emotional modulation of pain
(Apkarian et al., 2009, 2011; Lee and Tracey, 2010). Among the
prefrontal regions with high discriminative power, insular cortex is
believed to play a key role in pain processing (Coghill et al., 1999),
particularly in affective component of pain (Singer et al., 2004). It has
also been suggested to be importantly involved in the modulation of
pain by integrating cognitive and emotional information (Craig, 2009;
Gu et al., 2013). Subcortical regions spanning various limbic areas
such as amygdala, hypothalamus, septal area, and basal forebrain
were predictive with increased metabolism. These limbic regions have
been relatively less identified in human studies of pain with functional
magnetic resonance imaging (fMRI) compared to cortical regions. This
may be due to the low subcortical resolution of fMRI (Walter et al.,
2008). Indeed, meta-analyses of pain-related studies revealed that
subcortical areas were additionally identified when incorporating the
results from animal experiments on human brain imaging studies
(Hayes andNorthoff, 2012). The prefrontal/limbic regions are reciprocally
connected with brainstems and exert top–down modulation of spinal
processing of pain. There have been functional imaging studies observing
the activation and the altered connectivity of brainstems in response
to experimental pain (Becerra et al., 2011; Dunckley et al., 2005;
cy were measured using various numbers of feature voxels. # voxels, average number of

4 5 × 10−4 10−3 5 × 10−3 10−2 5 × 10−2 10−1

5 15,097 21,725 42,401 53,366 84,092 100,330

2 76.92 76.92 76.92 76.92 76.92 76.92
0 80.00 80.00 80.00 90.00 90.00 90.00
6 78.26 78.26 78.26 82.61 82.61 82.61
1 92.31 92.31 92.31 84.62 84.62 84.62
0 90.00 90.00 80.00 80.00 80.00 80.00
0 91.30 91.30 86.96 82.61 82.61 82.61
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Zambreanu et al., 2005) or during the modulation of pain (Ploner et al.,
2010; Valet et al., 2004). Taken together, one possible interpretation for
the predictive regions showing increased metabolism is that neuropathic
pain is related to altered cognitive/emotional modulation of pain
via prefrontal–limbic–brainstem networks, but how these alterations
underlie the pathological pain remains to be clarified. Widespread
cortical regions including S2, OC, TC, and RSC were predictive for
neuropathic pain and showed decreased metabolism. S2 is one of the
most frequently activated brain regions by pain stimulus and thought to
be associated with the sensory-discriminative aspect of pain (Seifert and
Maihofner, 2009). However, it is uncertain how the decreased activities
of S2 and other cortical regions in resting-state are related with the
neuropathic pain. It might reflect the altered function of pain perception,
or be related to the altered default mode network (DMN). Recently,
changes of DMN have been reported in clinical pain (Baliki et al., 2008;
Loggia et al., 2013). Rodent brains also have DMN (Lu et al., 2012;
Upadhyay et al., 2011) and it might be possible that decreased
activities of cortical regions reflect the alteration of DMN activity.

Although the successful prediction results of this study are
encouraging, limitation of our study should be noted. First, validation
of the classification was performed based on the decision of neuro-
pathic pain with withdrawal reflex measurement, which we aim to
complement. This limitation could be overcome by combining a variety
of neurobiological indexes of the brain observed in pathological
pain, such as activation of immediate early genes or altered electro-
physiological properties (Zhuo, 2011). Second, SVM classifier employed
in the present study does not provide continuous values for prediction,
only classifying subjects in a binarymanner. To overcome this limitation,
other probabilistic machine learning classifiers, such as Gaussian
processes and relevance vector machines could be an alternative
choice in future studies (Orru et al., 2012). Third, we did not validate
the capability of MVPA to distinguish neuropathic pain from other
conditions that have the potential to cause similar patterns of brain
activity with SNL animals. Further studies are needed that classifying
neuropathic pain from other conditions such as anxiety or other types
of pain. Lastly, although our study provides valuable information about
which brain regions represent the altered states of neuropathic pain in
combination, it is not clear how the regions with high discriminating
power changed their interconnectivity, thereby changed the distributed
pattern of the brain activity. Graph theoretical approach could provide
deeper insight into how the neuropathic pain alters the distributed
brain network (He and Evans, 2010).

Conclusions

We demonstrated that FDG micro-PET and multivariate pattern
approach can successfully identify animal models of neuropathic pain
at the individual level by capturing the altered pattern of the resting-
state brain activity.We also showed the superior prediction performance
of MVPA compared to univariate approach, highlighting the importance
of distributed patterns of brain activity in pathological pain. Our
results suggest that developing neuroimaging-based diagnostic tools
for pathological pain can be achieved by considering patterns of the
resting-state brain activity.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.10.001.
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