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Abstract

Purpose: The linkage between the genetic and phenotypic heterogeneity of the tumor has not been thoroughly
evaluated. Herein, we investigated how the genetic and metabolic heterogeneity features of the tumor are
associated with each other in head and neck squamous cell carcinoma (HNSC). We further assessed the prognostic
significance of those features.

Methods: The mutant-allele tumor heterogeneity (MATH) score (n = 508), a genetic heterogeneity feature, and
tumor glycolysis feature (GlycoS) (n = 503) were obtained from the HNSC dataset in the cancer genome atlas
(TCGA). We identified matching patients (n = 33) who underwent 18F-fluorodeoxyglucose positron emission
tomography (FDG PET) from the cancer imaging archive (TCIA) and obtained the following information from the
primary tumor: metabolic, metabolic-volumetric, and metabolic heterogeneity features. The association between
the genetic and metabolic features and their prognostic values were assessed.

Results: Tumor metabolic heterogeneity and metabolic-volumetric features showed a mild degree of association with
MATH (n = 25, ρ = 0.4~0.5, P < 0.05 for all features). The patients with higher FDG PET features and MATH died sooner.
Combination of MATH and tumor metabolic heterogeneity features showed a better stratification of prognosis than
MATH. Also, higher MATH and GlycoS were associated with significantly worse overall survival (n = 499, P = 0.002 and
0.0001 for MATH and GlycoS, respectively). Furthermore, both MATH and GlycoS independently predicted overall
survival after adjusting for clinicopathologic features and the other (P = 0.015 and 0.006, respectively).

Conclusion: Both tumor metabolic heterogeneity and metabolic-volumetric features assessed by FDG PET showed a
mild degree of association with genetic heterogeneity in HNSC. Both metabolic and genetic heterogeneity features
were predictive of survival and there was an additive prognostic value when the metabolic and genetic heterogeneity
features were combined. Also, MATH and GlycoS were independent prognostic factors in HNSC; they can be used for
precise prognostication once validated.
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Introduction
Cancer is a heterogenous disease at genetic, epigenetic, and
phenotypic levels [1]. Cancer progression is driven by a
genetic process of clonal evolution, which eventually causes
tumor genetic heterogeneity, a tumor with multiple subsets
of subclonal mutations [1]. Acquired tumor genetic hetero-
geneity is caused by the selective pressures during the evo-
lution process and affected by tumor vasculature and
immune system in the microenvironment [2]. Furthermore,
genetic heterogeneity eventually drives the phenotypic het-
erogeneity of tumor by interacting environmental factors
[3]. Heterogeneous subsets of tumor have different molecu-
lar targets, which may result in different levels of resistance
to the cancer treatment [4]. Accordingly, tumor heterogen-
eity is associated with the progression and eventual clinical
outcomes of cancer patients [5]. Thus, evaluation of tumor
heterogeneity is crucial for selecting anticancer strategies
and predicting clinical outcomes [6]. Advances in next-
generation sequencing (NGS) have allowed for extensive
understanding of tumor genetic heterogeneity and provided
useful features to evaluate of tumor heterogeneity [7, 8].
The mutant allele tumor heterogeneity (MATH), a genetic
heterogeneity feature, is easily calculated as a percentage of
mutant allele frequencies among tumor-specific mutated
loci. MATH has been known to have a prognostic value in
HNSC and colon cancer [9, 10].
Phenotypical heterogeneity can be noninvasively studied

using various imaging techniques including computed tom-
ography (CT), magnetic resonance imaging (MRI), and 18F-
fluorodeoxyglucose positron emission tomography (FDG
PET) [11]. FDG PET is a compelling image modality to
evaluate metabolic heterogeneity of tumors, a phenotypic
tumor heterogeneity [12]. Recently, heterogeneity parame-
ters obtained using FDG PET have been extensively evalu-
ated and reported to have diagnostic and prognostic values
in multiple types of malignancies including HNSC, non-
small cell lung cancer, and pancreatic cancer [12–16].
Although the metabolic features evaluated by FDG PET are
closely associated with biological factors in the tumor
microenvironment [12, 17, 18], it is still unknown whether
metabolic heterogeneity is associated with genetic hetero-
geneity [14].
Herein, we investigated if metabolic heterogeneity based

on FDG PET was associated with genetic heterogeneity rep-
resented by MATH. Furthermore, we explored the prog-
nostic value of both metabolic and genetic heterogeneity
features in predicting the outcomes of patients with HNSC.

Materials and methods
Data acquisition
Genomic and clinical data were obtained from the head
and neck squamous cell carcinoma dataset of the cancer
genome atlas (TCGA-HNSC). The FDG PET data of the
patients included in TCGA-HNSC was obtained from

cancer imaging archive (TCIA) which is a publicly avail-
able repository. TCGA and TCIA data were acquired by
a publicly available dataset that removed patient identi-
fiers. The publicly available data were collected with pa-
tients’ informed consent approved by the institutional
review boards of all participating institutions following
the 1964 Helsinki declaration and its later amendments
or comparable ethical standards. A total of 528 clinical in-
formation which was updated at 2018/08/30 were ac-
quired National Cancer Institute database for the survival
analysis. The somatic variants data were acquired for 508
TCGA-HNSC patients from the NCI database using R
data package ‘TCGAmutations.’ Glycolysis signature (Gly-
coS) was previously assessed for the metabolic signatures
of all TCGA samples [19] and downloaded from the
website (http://choih.shinyapps.io/metabolicsignatures). In
brief, GlycoS data were obtained by RNA sequencing data
of TCGA samples by using gene set enrichment analysis
and metabolic pathway genes of Reactome [20]. A total of
192 patients of TCGA-HNSC images in the TCIA
matched with the genomic data of the TCGA were avail-
able. Finally, we identified 33 cases which included base-
line FDG PET/CT scans and utilized the FDG PET scans
for further analysis.

Tumor metabolic features analyzed by FDG PET
In this study, primary tumor segmentation of all FDG
PET examinations was computed using PETedge tool of
MIMvista (MIM Software Inc., USA) by an expert. Be-
fore calculating the texture feature, we have changed X,
Y, Z values of all data sets as the same values (4.7, 4.7,
3.3) through trilinear voxel interpolation to compare
each other. Then feature extraction was performed using
LIFEx (IMIV, CEA, France) based on these regions of
interest (ROIs) [21]. Maximum standardized uptake
value (SUVmax), peak standardized uptake value (SUV-
peak), metabolic tumor volume (MTV), and total lesion
glycolysis (TLG) are the conventional metabolic or
metabolic-volumetric parameters which are the most
extensively studied in the previous studies and found to
be prognostic in head and neck cancer [22–24]. Among
the many heterogeneity parameters, we selected entropy
and coefficient of variation (COV) because these features
were reproducible and robust values in different recon-
struction and acquisition time settings according to pre-
vious studies [25, 26]. Two tumor metabolic features
(SUVmax and SUVpeak), two metabolic-volumetric
(TLG and MTV), and two metabolic heterogeneity fea-
tures (entropy and COV) were obtained. Entropy was
calculated based on SUV histogram using the equation;

Entropy ¼ −
X

i

pðiÞ � log2ðpðiÞ þ εÞ . Entropy reflects

the randomness of the distribution where p(i) is the
probability of occurrence of voxels with intensity i and
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ε = 2e-16. COV was calculated as standard deviation di-
vided by SUVmean of the ROI. There were small tumors
among the patients (range 0.36~ 3.93 mL, median
1.14 mL). However, we could calculate entropy and
COV in all tumors, because entropy was the histogram-
based parameter and COV can be calculated from SUV
distribution. Twenty-five head and neck squamous cell
carcinoma (HNSC) cases which have both FDG PET
feature extraction data and gene mutation data were
available to perform correlation analysis.

Tumor genetic heterogeneity
The MATH score was obtained as a percentage of the me-
dian absolute deviation (MAD) and median by clustering
the variant allele frequency in each mutated loci using the R
‘maftools’ package [27]. Each MATH score was calculated
using MAF files for a total of 508 tumor samples, and this
was used for survival analysis together with survival data.

Survival analysis
Overall survival (OS) can be obtained from the clinical data,
which is defined as the period from the date of diagnosis
until the date of death from any cause. The censored time
is from date of initial diagnosis until the date of last contact
(largest number of days) from all the clinical data files [28].
For evaluation of prognostic value of the features, we di-
vided the patients into two groups (high and low groups)
according to an optimized cut-off of each feature. The
optimized cut-off was selected using the ‘cutoff finder
(http://molpath.charite.de/cutoff/index.jsp).’ We selected
the method for ‘Survival: significance (log-rank test)’ for
cutoff determination. This cutoff is the most significant
point from log-rank test which divide the variables into two
groups. The high and low groups were compared using the
log-rank test and Kaplan Meyer analysis. Cox regression
analysis was also performed in multivariable survival ana-
lysis using continuous MATH, GlycoS, age, and categorical
clinicopathologic variables (sex and tumor stage).

Fig. 1 Study scheme. A scheme for integrative study of radiogenomics. FDG PET data and genomic mutation data for TCGA-HNSC dataset were
obtained from each database of TCIA and TCGA. a The primary tumor was manually assigned, and then ROIs were computed for feature
extraction. b MATH calculation using MAF files were done in R. Also, metabolic glycolysis (GlycoS) value was obtained using gene set enrichment
analysis. c Clinical data of TCGA-HNSC was gained from TCGA. Total six features were selected and used for radiogenomic analysis. We statistically
analyzed radiomic, clinical and genomic data using correlation analysis, Kaplan-Meier analysis, log-rank test
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Statistical analysis
Association between these genomic and tumor metabolic
features was analyzed by using correlation analysis and the
prognostic value of the parameters were assessed using
the log-rank test. To analyze the correlation between two
genomic and selected six FDG PET features, Spearman
correlation analysis was performed. Correlation coeffi-
cients and p values were gained and used to sort statisti-
cally significant features (P value < 0.05). All statistical
analyses were performed in R (version 3.4.4) and SPSS
(version 25). All tests were two-sided and P values less
than 0.05 were considered significant.

Results
Patient characteristics
The scheme of this study is demonstrated in Fig. 1. The
number of patients with genomic data was 508. The pa-
tients had a median age of 61 years (range of 20–90 years)
and a median follow-up days of 633 days (range of 2–
6417 days). Among them, 220 patients died during the
follow-up. In all patients, 78% were stage III/IV, and there
were an about three times higher number of men than
women (371 vs. 137).
The characteristics of 25 patients who were available

for both genomic and FDG PET analysis are summarized
in Table 1. Primary tumor segmentation and feature ex-
traction were performed using FDG PET scans of the
patients. The median age of the patients was 56 years
(range of 38–84 years). Among 25 patients with a me-
dian follow-up of 458 days (range of 30–6417 days), six
patients died while 18 were alive.

Association between genetic and FDG PET features
Correlation analyses between MATH, GlycoS, and FDG
PET features (SUVmax, SUVpeak, TLG, MTV, entropy,
and COV) were performed in 25 patients. Metabolic het-
erogeneity features and metabolic-volumetric features
showed a trend for association with the genetic hetero-
geneity feature, MATH (ρ = 0.488, P = 0.013 for entropy;
ρ = 0.402, P = 0.047 for COV, ρ = 0.521, P = 0.008 for
MTV; ρ = 0.472, P = 0.017 for TLG) (Figs. 2 and 4). On
the other hand, SUVmax and SUVpeak were not signifi-
cantly associated with MATH (ρ = 0.328, P = 0.110 for
SUVmax; ρ = 0.286, P = 0.250 for SUVpeak) (Fig. 2).
We evaluated the association between GlycoS calcu-

lated by gene expression and FDG PET features to use
GlycoS as a surrogate of tumor metabolic features for
more patients in survival analysis. TLG and MTV from
FDG PET showed moderate degree of associations with
the GlycoS (ρ = 0.590, P = 0.002 for MTV; ρ = 0.570, P =
0.004 for TLG). The GlycoS showed a trend of positive
correlation with entropy, while COV, SUVmax, and
SUVpeak did not (ρ = 0.519, P = 0.009 for entropy; ρ =

0.393, P = 0.057 for COV; ρ = 0.331, P = 0.114 for SUV-
max; ρ = 0.272, P = 0.291 for SUVpeak) (Fig. 3).

Prognostic value of the genetic and FDG PET features
We analyzed the prognostic value of genetic and FDG
PET features. SUVmax, MTV, TLG, and entropy were
predictive of OS (P < 0.05 for the features), while COV
tended to predict the OS (P = 0.072) (Figs. 4 and 5).
Also, MATH tended to predict the OS (P = 0.086) in
the 25 patients. Thus, we tested the predictive value of
using both heterogeneity features from genetic data
and FDG PET. We divided the patients into two
groups (low and high) based on both heterogeneity fea-
tures. Low group consists of patients who are in low
group for both MATH and FDG PET feature (COV or
entropy) and high group consists of patients who are
in high group for MATH and/or FDG PET feature
(COV or entropy). We found that the combination of
MATH and FDG heterogeneity features showed more
robust predictive value of OS than using only MATH
(MATH: P = 0.086, MATH + COV: P = 0.024, MATH
+ Entropy: P = 0.012, Fig. 6).

Table 1 Patients characteristics (FDG-PET)

Patients, n 25 (1 of not available clinical data)

Median follow-up (days) 458 (30–6417)

Vital status

Dead 6

Alive 18

Age (years)

Median 56

Range 38~84

Gender

Male 18

Female 6

Clinical stage

I 3

II 5

III 2

IVA 13

IVB 1

IVC 0

Tumor site

Alveolar ridge 1

Base of tongue 2

Larynx 5

Oral cavity 4

Oral tongue 3

Tonsil 9
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Finally, we further analyzed the prognostic value of
MATH and GlycoS in 499 patients. We found that
MATH and GlycoS were highly predictive of OS in uni-
variate analysis using log-rank test and Kaplan-Meyer
analysis (P = 0.002 for MATH; P = 0.0001 for GlycoS)
(Fig. 7a, b). MATH and GlycoS were predictive of OS
even after adjustment using clinicopathologic features
(age, sex, and tumor stage) in multivariate Cox regres-
sion analysis. Furthermore, both MATH and GlycoS
were still significant prognostic factors even after includ-
ing both features and the clinicopathologic features in
the same model. This result indicates that both features
have an additive role over each other to predict OS (P =
0.015 for MATH; P = 0.006 for GlycoS) (Table 2).

Discussion
We found that the tumor metabolic features estimated
by FDG PET showed a mild but statistically significant
level of association with tumor genetic heterogeneity.
Specifically, tumor metabolic-volumetric and metabolic
heterogeneity features of FDG PET were associated with
MATH in a mild degree. This finding supports the no-
tion that quantifiable FDG uptake features reflect the
tumor heterogeneity at the genomic level in HNSC [10].
Also, there was additive prognostic value when the FDG

PET and genetic heterogeneity features were com-
bined. Additionally, both genetic heterogeneity feature
(MATH) and glycolysis feature (GlycoS) were inde-
pendently predictive of OS even after adjusting for
clinicopathologic features.
Recently, tumor imaging phenotypes were found to be re-

lated to gene expression profiles in HNSC [10, 17, 29–32].
Specifically, SUV and heterogeneity features estimated
by FDG PET were related to 1177 differentially
expressed genes in normal and tumor tissues [10]. Pre-
vious studies have shown a link between FDG uptake
and several specific genes which modulate glucose me-
tabolism [33–35]. Also, phenotypic whole tumor-level
heterogeneity can be noninvasively recognized by vari-
ous imaging techniques including computed tomog-
raphy (CT), magnetic resonance imaging (MRI), and
FDG PET [11]. However, it has been unclear whether
the genetic heterogeneity assessed by a small sample of
tumor tissue can reflect the whole tumor-level pheno-
typic heterogeneity or not [6]. Also, there has been no
study to evaluate the association of tumor heterogen-
eity measured by FDG PET and genomic analysis in
patients with HNSC. As cancer cells are evolved in a
heterogeneous spatiotemporal environment based on
genetic heterogeneity, we hypothesized that genetic

Fig. 2 Correlation between MATH and FDG PET features. Scatter plots for correlation analysis of MATH and FDG PET features. Each blue dots
represent patients available for MATH and radiomic data (N = 25). Upper left box shows Spearman correlation coefficient (ρ) and P value. The dark
gray line means a linear regression line and the gray region is 95% confidence region
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heterogeneity might be associated with whole tumor
level heterogeneity measured by FDG PET. In this
study, by utilizing the database of TCGA and TCIA,
we were able to find that there is an association be-
tween whole tumor level heterogeneity based on FDG
PET and genetic heterogeneity in HNSC. Although the
association was statistically significant, the level of
association was weak with correlation coefficients of
0.4~0.5. This weak level of association was not a
surprise because the methods to measure the tumor
heterogeneity were totally different between FDG PET
heterogeneity parameters and MATH. MATH was ob-
tained from genetic sequencing data of a small portion of
tumor, while FDG PET heterogeneity parameters were
calculated from an imaging data reflecting metabolic status
of a whole tumor area. It is noteworthy that there was a
mild degree of association between MATH and FDG PET
heterogeneity parameters, even with this striking difference
of the methods to measure the tumor heterogeneity.
MATH is a genetic heterogeneity measure, which can

be easily quantified as a percentage of mutant allele fre-
quency among tumor-specific mutated loci. Also, the
prognostic value of MATH has been validated in HNSC
and colon cancer [9, 36, 37]. In the patients with HNSC,

high MATH score was associated with increased mortal-
ity [36, 37]. Also, MATH was associated with the risk of
metastases in patients with colon cancer [9]. However,
the ability of MATH to represent tumor heterogeneity
has not been tested by other modalities. We have dem-
onstrated that MATH was highly associated with the
representative heterogeneity features from FDG PET
(entropy, COV). This result is in line with a recent study
by Moon et al. They showed that Shannon’s heterogen-
eity index was associated with entropy in patients with
small cell lung cancer [38]. Furthermore, we found that
MATH was predictive of OS in patients with HNSC
even after adjusting clinicopathologic features.
Recent meta-analyses showed that various FDG PET

features including SUVmax, MTV, and TLG were
prognostic factors in multiple types of malignancies
[39–42]. Also, heterogeneity features of FDG PET
have shown to be associated with treatment response
and clinical outcome in multiple types of malignancies
[13, 15, 43–45]. Among the heterogeneity features, en-
tropy and COV have been widely accepted and proven
to be useful for predicting treatment response and
clinical outcomes [13, 15, 44]. For example, entropy
was predictive of OS in pancreatic cancer [15], and the

Fig. 3 Correlation between GlycoS and FDG PET features. Scatter plots for correlation analysis of GlycoS and FDG PET features. Each green dots
represent patients available for MATH and radiomic data (N = 25). Upper left box shows Spearman correlation coefficient (ρ) and P value. The dark
gray line means a linear regression line and the gray region is 95% confidence region
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changes in entropy were independently associated with
treatment response in erlotinib-treated non-small cell lung
cancer [13]. Also, COV was superior to conventional pa-
rameters in predicting therapy response and disease pro-
gression in rectal cancer [44]. We found that entropy and
COV were strongly associated with MATH, a genetic het-
erogeneity feature, which re-enforced the genetic back-
ground of the features and thus increased possibility of
clinical utilization of the features.
MTV and TLG are radiomic features that represent

metabolic-volumetric tumor burden. MTV is a measure-
ment of tumor volume with increased glucose metabol-
ism, while TLG is the product of MTV and the mean
SUV of the volume. MTV and TLG are considered to be
better prognostic factors than simple metabolic feature
such as SUVmax [41, 46, 47]. In this study, we also

found that MTV and TLG are significantly associated
with genetic heterogeneity. As the tumor spatially grows,
the larger volume of tumor likely to be more
heterogenous reflecting genetic heterogeneity by cancer
evolution. Multiple studies have shown that MTV and
heterogeneity features of FDG PET such as COV and
texture features are associated [48–50]. Therefore, tumor
metabolic-volumetric features are likely to be an indica-
tor of tumor genetic heterogeneity due to cancer evolu-
tion. Also, the association of MTV and TLG with
genetic heterogeneity may further explain the robustness
of the features in predicting the clinical outcomes.
Glycolysis is a crucial pathway regulating oncogenes,

tumor suppressor genes, and glycolytic enzymes as well
as accelerating cell proliferation in cellular metabolism
[51]. Factors of metabolic glycolysis are associated with

Fig. 4 Representative cases. a A patient had a tongue cancer with high metabolic heterogeneity (high entropy and high COV groups). Genomic
analysis of the patient revealed that the tumor had high genetic heterogeneity (high MATH group). b A patient had a left tonsillar cancer with
low metabolic heterogeneity (low entropy and low COV group) based on FDG PET. Genomic analysis of the patient revealed that the tumor had
low genetic heterogeneity (low MATH group). Of note, low and high entropy, COV, and MATH groups are divided according to the optimized
cut-offs obtained by cut-off finder (http://molpath.charite.de/cutoff/index.jsp)
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poor prognosis and tumor resistance to therapy in
HNSC [52]. Also, glycolysis gene expression correlates
FDG uptake features [30, 33–35]. However, the previous
studies only explored the relationship of representative
genes such as glucose transporter (GLUT) or hexokinase
(HK). On the other hand, we utilized a novel glycolysis
signature, GlycoS, which was derived from multiple gly-
colysis-associated genes defined by Reactome [19, 53]. We
found that metabolic-volumetric features (MTV, TLG)

were significantly associated with GlycoS. Unexpectedly,
SUVmax and SUVpeak were not associated with GlycoS.
One potential explanation is that many glycolysis-
associated genes may not influence the intensity of FDG
uptake, because the FDG uptake kinetics is primarily deter-
mined by glucose transportation by GLUT and phosphor-
ylation by HK [54]. Even though, a higher number of
patients may prove the associations between SUVmax and
GlycoS, since there was a trend of positive correlation (P =

Fig. 5 Prognostic value of FDG PET features. Kaplan-Meier curves of each group divided with adjusted cutoff value of FDG features. Survival
analysis and log-rank test were performed to compare each group. Low and high FDG subsets for 25 patients. Red, high subset; blue, low subset.
Of note, low and high MATH and GlycoS groups are divided according to the optimized cut-offs obtained by cut-off
finder (http://molpath.charite.de/cutoff/index.jsp)

Fig. 6 Predictive value of combined MATH and FDG PET features. Kaplan-Meier curves of each group divided with adjusted cutoff value of
the features. a MATH showed a trend of prediction of OS (P = 0.086). b, c When MATH and FDG features were combined, the predictive
value became more robust (B: MATH+COV, P = 0.024, C: MATH + Entropy, P = 0.012). Low group = patients in low group for both features;
High group = patients in high group at least one feature. Of note, low and high groups are divided according to the optimized cut-offs
obtained by cut-off finder (http://molpath.charite.de/cutoff/index.jsp)
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0.114). Also, we found that GlycoS is predictive of OS in
patients with HNSC. Furthermore, GlycoS was predictive
of OS even after adjusting MATH and clinicopathologic
features. This implies that GlycoS has an additive prog-
nostic value over MATH.
There are several limitations to this study. First, a

limited number of samples were available in public
archives. Also, we found only a mild degree of associ-
ation between the genetic and FDG PET heterogeneity,
and there were large number of scatters outside of the
standard deviation (Fig. 2). Further studies will yield
clearer results if analyzed using a larger number of
expanded data. Second, FDG PET data from TCIA
were applied to different technologies, reconstruction,
and attenuation correction methods. So each image is
difficult to compare to each other, and even SUVmax
values vary, which may affect clinical decision [55]. To
solve this problem, we did voxel interpolation to make
all images have uniform voxel sizes. Also, we used
entropy and COV as a tumor heterogeneity texture
features because these are the most reliable upon

reconstruction method. Third, although metabolic fea-
tures and genomic signatures obtained in this study
were candidates for future biomarkers, these are not
validated precisely. Although we used representative
genomic and metabolic features which have clinical
implications with prognosis, there might be better fea-
tures than these eight features. In a future study, more
features could be considered for understanding cause
and effect through systemic tumor biology. Nonethe-
less, our results show a correlation between genetic
heterogeneity features and metabolic heterogeneity
features and prognostic value about each feature.

Conclusion
Tumor genetic heterogeneity was associated in a mild
degree with metabolic heterogeneity measured by
FDG PET in patients with HNSC. Genetic and
metabolic heterogeneity features were predictive of
OS, and there was additive prognostic value when the
FDG PET and genetic heterogeneity features were
combined. Moreover, genetic heterogeneity feature

Fig. 7 Prognostic value of MATH and GlycoS. Kaplan-Meier curves of each group divided with adjusted cutoff value of genetic signatures.
Survival analysis and log-rank test were performed to compare each group. a Low MATH and high MATH subsets for 499 patients. Red, high
MATH (MATH > 37.17); blue, low MATH (MATH < 37.17). b Same analysis as (a) comparing low GlycoS and high GlycoS subsets. Red, high
GlycoS (GlycoS > 0.80); blue, low GlycoS (GlycoS < 0.80). Of note, low and high MATH and GlycoS groups are divided according to the
optimized cut-offs obtained by cut-off finder (http://molpath.charite.de/cutoff/index.jsp)

Table 2 Multivariate cox regression test for MATH and GlycoS

Hazard ratio (95% CI) P value

MATH (unadjusted) 1.013 (1.002–1.024) 0.016

MATH (adjusted for age, gender, and tumor stage) 1.016 (1.004–1.027) 0.007

MATH (adjusted for GlycoS, age, gender, and tumor stage) 1.014 (1.003–1.026) 0.015

GlycoS (unadjusted) 1.381 (1.129–1.689) 0.002

GlycoS (adjusted for age, gender, and tumor stage) 1.362 (1.112–1.668) 0.003

GlycoS (adjusted for MATH, age, gender, and tumor stage) 1.331 (1.085–1.633) 0.006
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(MATH) and glycolysis feature (GlycoS) were inde-
pendent predictors of OS.
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