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Discovery of potential imaging 
and therapeutic targets for severe 
inflammation in COVID‑19 patients
Hyunjong Lee1,2,3, Jeongbin Park2, Hyung‑Jun Im2,4,6*, Kwon Joong Na5,6* & 
Hongyoon Choi1,6*

The Coronavirus disease 2019 (COVID‑19) has been spreading worldwide with rapidly increased 
number of deaths. Hyperinflammation mediated by dysregulated monocyte/macrophage function is 
considered to be the key factor that triggers severe illness in COVID‑19. However, no specific targeting 
molecule has been identified for detecting or treating hyperinflammation related to dysregulated 
macrophages in severe COVID‑19. In this study, previously published single‑cell RNA‑sequencing data 
of bronchoalveolar lavage fluid cells from thirteen COVID‑19 patients were analyzed with publicly 
available databases for surface and imageable targets. Immune cell composition according to the 
severity was estimated with the clustering of gene expression data. Expression levels of imaging 
target molecules for inflammation were evaluated in macrophage clusters from single‑cell RNA‑
sequencing data. In addition, candidate targetable molecules enriched in severe COVID‑19 associated 
with hyperinflammation were filtered. We found that expression of SLC2A3, which can be imaged by 
 [18F]fluorodeoxyglucose, was higher in macrophages from severe COVID‑19 patients. Furthermore, by 
integrating the surface target and drug‑target binding databases with RNA‑sequencing data of severe 
COVID‑19, we identified candidate surface and druggable targets including CCR1 and FPR1 for drug 
delivery as well as molecular imaging. Our results provide a resource in the development of specific 
imaging and therapy for COVID‑19‑related hyperinflammation.

The Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) infection has led to over 1,100,000 deaths worldwide as of October 18,  20201. The Chinese Centers 
for Disease Control and Prevention analyzed the characteristics of 72,314 cases of COVID-19 and reported that 
disease severity varies widely, with 81% of patients experiencing mild disease, 14% developing severe disease, 
and 5% developing critical disease that is characterized by respiratory and/or multiorgan  failure2, 3. In most 
cases, severe/critical disease develops within 2 weeks after symptom  onset4, and in a recent study, it was reported 
that the mortality of patients undergoing mechanical ventilation was 88.1%4, 5. Therefore, efforts to identify and 
manage patients who are at high risk of developing severe illness are urgently needed.

Hyperinflammation mediated by dysregulated macrophages is considered to be the key factor causing severe 
disease in patients with severe COVID-19 based on observations of macrophages in the alveolar lumina and 
increased cytokine levels in severe COVID-19  patients6, 7. Recently, targeted probes based on small molecules and 
antibodies have contributed to precise diagnosis and treatment in various inflammatory and infectious  diseases8,9.  
Nonetheless, which molecular targets might be utilized in imaging and drug delivery for hyperinflammation in 
severe COVID-19 has not been investigated. Molecular imaging to detect characteristic hyperinflammation by 
a dysregulated immune response has the potential to predict the progression of severe COVID-19. Furthermore, 
a drug delivery system to target specific immune cells that cause hyperinflammation in severe COVID-19 might 
allow precise immune modulation and greatly impact patient survival.
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In this study, we employed previously published single-cell RNA-sequencing (scRNA-seq) data based on 
bronchoalveolar lavage (BAL) fluid cells of healthy controls and COVID-19 patients for a data-mining study. It 
was analyzed along with three different databases, the Surfaceome  database10, the Database of Imaging Radiola-
beled Compounds (DIRAC)11, and  BindingDB12, to identify feasible targets for molecular imaging and therapy 
in severe COVID-19.

Materials and methods
Preprocessing scRNA‑seq data. scRNA-seq data for BAL fluid were downloaded from the Gene Expres-
sion Omnibus database (GSE145926). Patient data we used were acquired by a publicly available dataset that 
removed patient identifiers. The original datasets were approval-free to use based on public databases. The 
scRNA-seq data of each sample were preprocessed to exclude low-quality cells and check the mitochondrial 
genome using the PercentageFeatureSet function of the Seurat package. The cells were filtered for the analysis 
with cut-off values: expression of at least 200 genes and at most 6000 genes to exclude cell duplets, total counts 
more than 1000 counts, and less than 10% of transcripts of mitochondrial genes. Data were then scaled by log-
normalization after the read counts were divided by the total number of transcripts and multiplied by 10,000. 
Highly variable 2,000 genes were selected using the FindVariableFeatures function of the Seurat package (version 
3.0)13. Subsequently, the data of each sample were integrated using the FindIntegrationAnchors and IntegrateData 
function of the Seurat package. Data were then scaled to z-scores with regression of total cellular read counts and 
mitochondrial read counts. Cell types were determined by the graph-based clustering approach implemented by 
the FindClusters function of the Seurat package. Before clustering, dimension reduction was performed by prin-
cipal component analysis, and 50 dimensions were used for clustering. The conservative resolution was set to 1.2.

Clustering cells into each immune cell type. The FindAllMarkers function of the Seurat package 
was used to identify marker genes of the clusters, and high-ranked marker genes according to the fold-change 
were identified for each cluster with Wilcoxon rank sum test and likelihood-ratio test. For data visualization, 
the scRNA-seq data were embedded into two-dimensional projection, t-stochastic neighborhood embedding 
(t-SNE). The expression levels of known marker genes, CD68, FCGR3B, CD79A, LILRA4, KLRD1, CD3D, 
KRT18, and CD1C (Supplementary Fig. S1), were assessed to identify cell types, and each cluster was classified 
into nine cell types based on the expression level: T-cell, B-cell, natural killer (NK) T-cell, epithelial cell, neutro-
phil, myeloid dendritic cell, plasmacytoid dendritic cell, and macrophage.

Evaluating expression of alleged imaging targets. We selected molecular targets and matched imag-
ing tracers among metabolism-related tracers: glucose transporters (GLUT)/2-[18F]-fluoro-2-deoxy-d-glucose 
 ([18F]FDG)14, monocarboxylate transporters (MCT)/[11C]-acetate15, folate receptors (FOLR)/[18F]-labeled folic 
acid  derivatives16, and L-type amino acid transporter 1/[11C]-methionine17. Furthermore, target molecules for 
macrophage imaging and matched imaging tracers were selected: translocator protein (TSPO)/[11C]-PBR2818 
and mannose receptor 1 (MRC1)/2-deoxy-2-[18F]-fluoro-D-mannose19. The expression levels of other imaging 
target molecules were also examined: somatostatin receptor subtype-2 (SSTR2)/[68Ga]-DOTA-TATE20, fibro-
blast-activated protein (FAP)/[68Ga]-fibroblast-associated protein  inhibitor21 considering pulmonary fibrosis of 
COVID-1922, alpha-v-beta-3 integrin (ITGAV)/arginylglycylaspartic acid (RGD)23, CD8 + T-cells/[89Zr]-radi-
olabeled human CD8-specific  minibody24, and granzyme B (GZMB)/[68Ga]-NOTA-GZP25. We obtained expres-
sion level of selected imaging targets.

Additionally, we used Reactome to select genes of glycolysis and oxidative phosphorylation (OXPHOS) 
pathways to examine the overall activity of metabolic  pathways26. The metabolic enrichment scores of each cell 
were estimated by the AddModuleScore function of the curated gene sets of both pathways to define the metabolic 
profiles of each sample. t-SNE plots and violin plots were generated using Seurat. Expression of imaging targets 
and enrichment scores of metabolic pathways were compared using a Kruskal–Wallis test. For each cluster of 
cells, feature scores of severe, moderate COVID-19 and healthy controls were compared. A p-value < 0.05 was 
considered significant (two tailed).

Exploration of target molecules in open access databases. We hypothesized that an ideal target for 
imaging and targeted therapy of COVID-19 would have the following characteristics: (1) highly expressed in 
severe COVID-19, (2) expressed on the cell surface, and (3) the existence of binding molecules. Thus, we utilized 
three different databases: the Surfaceome  database10, the DIRAC 11, and  BindingDB12. The Surfaceome data-
base was constructed using publicly available data on genes to catalog all those known to (or likely to) encode 
cell surface proteins (www. rdm. ox. ac. uk/ resea rch/ rabbi tts- group); because they can be targeted by ligands or 
antibodies, surface proteins associated with severe COVID-19 hyperinflammation may be candidates for imag-
ing and therapy targets. DIRAC is an open-access positron emission tomography (PET) radiotracer database 
that provides  [18F]-radiolabeled compounds with associated specific molecules (http:// www. iphc. cnrs. fr/ dirac/). 
BindingDB is a database of drug targets with small molecules binding to specific proteins (https:// www. bindi 
ngdb. org/).

Venn diagrams were used to display the numbers of marker genes enriched in the specific macrophage sub-
types, surface protein-encoding mRNA from the Surfaceome database, and target proteins from the DIRAC. 
Among markers of each cell cluster, surface markers were selected by Surfaceome, and the top 10 surface targets 
according to the fold change were selected. The surface markers between different clusters were then compared.

Additional study in supplementary datasets. Two other datasets were employed for validation study, 
GSE147143 and GSE149689. The former dataset contains scRNA-seq of BAL fluid from three severe COVID-

http://www.rdm.ox.ac.uk/research/rabbitts-group
http://www.iphc.cnrs.fr/dirac/
https://www.bindingdb.org/
https://www.bindingdb.org/


3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14151  | https://doi.org/10.1038/s41598-021-93743-2

www.nature.com/scientificreports/

19  patients27. The latter dataset contains scRNA-seq of peripheral blood mononuclear cells (PMBCs) from four 
healthy donors, five influenza patients, and eight COVID-19  patients28. Among the latter dataset, scRNA-seq 
from healthy donors and COVID-19 patients were selected. Pre-processing was performed in the same way as 
described above, except that the resolution was set to 0.3. The resolution was set as lower value to obtain appro-
priate number of clusters to characterize each cluster. In the former dataset, six markers were used to cluster 
immune cells and epithelial cells: CD68, FCGR3B, KLRD1, CD3D, KRT7, and TPPP3 (Supplementary Fig. S2a). 
In the latter dataset, six markers were used to cluster immune cells, platelet, and erythrocyte: CD68, CD6, HBB, 
KLRD1, PPBP, and MS4A1 (Supplementary Fig. S3a). Expression of candidate proteins for imaging and thera-
peutic targets were evaluated in each dataset. All statistical analyses were performed using the R program (v 
3.6.1).

Figure 1.  Bronchoalveolar immune landscape of COVID-19 patients and overview of the study design. (a) 
t-SNE projection of major cell type clusters in BAL fluid according to the severity of COVID-19 infection. 
Each point represents a single cell, and color coding of each patient group (upper left) and cell type population 
(upper right) are shown adjacent (HC = healthy control; M = moderate COVID-19 infection; S = severe COVID-
19 infection). (b) The composition of major cell types per patient group. (c) Workflow for targetable molecule 
discovery in severe COVID-19 patients. We analyzed the expression level of potential imaging targets for 
COVID-19 patients. Additionally, we explored the marker genes of COVID-19-related immune cell clusters 
from three public databases (Surfaceome database, PET tracer database, and BindingDB).
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Results
Composition of immune cells in BAL fluid. scRNA-seq data of BAL fluid cells were obtained from three 
patients with moderate COVID-19, six patients with severe/critical COVID-19, and four healthy controls (Gene 
Expression Omnibus database, accession number GSE145926)29. BAL fluid cells were classified into 21 clusters 
according to expression of cell-type specific marker genes (Fig. 1a, Supplementary Fig. S1). We explored the cell 
subpopulation of each group and identified a substantial difference in the composition of immune cells between 
the three groups (Fig. 1b). The majority of cells in BAL fluid were composed of different types of macrophages in 
the three groups. T-cells were more abundant in the moderate COVID-19 group than in the severe COVID-19 
group. In contrast, neutrophils, NK T-cells, and plasma cells were more abundant in the severe COVID-19 group 
than in the moderate COVID-19 group. The composition of macrophage subpopulations differed between the 
three groups: 1) in the healthy control group, a cluster of macrophages, M02, was the most abundant subpopula-
tion; 2) in moderate COVID-19, M04 was the most abundant cluster; and 3) in severe COVID-19, M01 and M03 
were the two most dominant cell types.

We utilized the following two different approaches to discover potential targets to image and/or modulate 
the dysregulated immune system in severe COVID-19: 1) evaluating the expression levels of alleged imaging 
targets for inflammation and 2) exploring markers filtered by targetable molecules based on publicly available 
databases (Fig. 1c).

Evaluating expression levels of alleged imaging targets. All selected molecular targets were pro-
jected onto a t-distributed stochastic neighbor embedding (t-SNE) plot depicting 21 immune cell clusters of all 
patients, and macrophages enriched in severe COVID-19 patients were marked separately (Fig. 2a). The expres-
sion levels of molecular targets were scattered separately for cells from healthy controls, moderate COVID-
19, and severe COVID-19 for each immune cell cluster. SLC2A1 (GLUT1) showed low expression across the 
immune cell clusters, whereas SLC16A3 (MCT4) was highly expressed in macrophage clusters. To analyze 
whether molecular targets are able to distinguish the severity of COVID-19 infection, we compared the expres-
sion level of each target between the groups (Fig. 2b, Supplementary Fig. S4). We found that SLC2A3 (GLUT3) 
was increased in macrophage clusters enriched in severe COVID-19 patients. TSPO and MRC1 were highly 
expressed in macrophage clusters enriched in healthy controls and moderate COVID-19 patients. GZMB was 
highly expressed in CD8 + T-cells and NK T-cells of the severe COVID-19 group. As we found that GLUT3 was 
associated with M01 and M03 clusters, two dominant macrophage subtypes in severe COVID-19, we further 
analyzed enrichment scores for glycolysis and OXPHOS pathways to explore the characteristics of glucose uti-
lization in severe COVID-19 (Fig. 2c). Interestingly, in most immune cells, including T-cells and macrophages, 
enrichment scores of glycolysis were higher in the severe COVID-19 group than in the moderate and healthy 
control groups. In neutrophil and macrophage clusters, scores of OXPHOS were lower in the severe group than 
in the moderate and healthy control groups. As  [18F]FDG uptake is determined by expression levels of GLUTs 
and hexokinase, the initial enzyme of glycolysis, we assume that  [18F]FDG PET can be used for the identification 
of immune cells associated with severe COVID-19.

Exploration of ideal targets of severe COVID‑19 hyperinflammation. Based on the proportions 
of immune cells within each group (Fig. 1b), we considered M01/M03, M04, and M02 as specific macrophage 
subtypes for the severe COVID-19, moderate COVID-19, and healthy control groups, respectively. Targetable 
marker proteins of the M01, M02, M03, and M04 clusters were explored with two different methods, Wilcoxon 
rank sum test and likelihood-ratio test. Subsequently, we identified specific targetable proteins included in both 
the Surfaceome and PET tracer databases. SLC3A2 and SLC2A3 in the M01 cluster and FOLR2 in the M03 clus-
ter were identified in results from both methods, indicating that  [18F]FDG and  [18F]-labeled folic acid derivatives 
may be useful for imaging severe COVID-19 (Fig. 3a).

Additionally, the top 10 surface markers of M01, M02, M03, and M04 selected by fold-changes were visual-
ized by the average expression level and proportions of transcripts-expressing cells (Fig. 3b). Notably, a few 
surface molecules enriched in M01/M03 among the top 10 surface markers correspond to drug targets in the 
BindingDB, including CCR1, FPR1, and GPR183. FPR1 was higher in the severe COVID-19 group than in the 
healthy control and moderate groups (Fig. 3c). The specific peptide ligand of FPR1, cinnamoyl-F-(D)L-F-(D)L-F 
(cFLFLF), has been used for imaging  inflammation30 and targeted drug delivery conjugated with  nanoparticles31 
(Fig. 3c). Thus, we suggest that cFLFLF-based imaging or drug delivery systems can be utilized for imaging and 
therapy of severe COVID-19. Additionally, there are 1155 and 22 ligand candidates for CCR1 and GPR183, sur-
face targets enriched in severe COVID-19, in BindingDB, respectively. All markers of M01, M02, M03, and M04 
with surface targets, PET database and targeting drug candidates are summarized in Supplementary Table S1. 
Accordingly, for M01/M03 subtypes, 154 surface target candidates, nine  [18F]-labeled radiotracers, and 132 
molecules associated with drug targets were identified, warranting further evaluation for utilization in imaging 
and therapy of severe COVID-19.

Additional study in supplementary datasets. Among markers suggested above, five markers were 
selected for additional study: SLC2A3, FOLR2, CCR1, FPR1, and GPR183. In scRNA-seq data from GSE147143 
dataset (BAL fluid of severe COVID-19 patients), SLC2A3, CCR1, and FPR1 were highly expressed in the mac-
rophage and neutrophil clusters. GPR183 was highly expressed in the macrophage cluster (Supplementary 
Fig. S2b). In scRNA-seq data from GSE149689 dataset (PBMCs of COVID-19 patients), there was a specific 
myeloid cell cluster (My04) was identified in severe COVID-19 patients (Supplementary Fig. S3b). Especially, 
SLC2A3 and FPR1 were expressed highly in the My04 cluster (Supplementary Fig. S3c).
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Figure 2.  Potentially alleged imaging marker molecules of COVID-19 and metabolic pathways. (a) t-SNE plots 
showing the expression of several potentially alleged imaging targets on BAL fluid immune cells. The markers 
indicate the heterogeneous pattern of expression across the immune cells. The last panel indicates subtypes of 
macrophages abundant in severe COVID-19 patients. (b) Expression levels of SLC2A3, SLC16A3, and TSPO 
across cell clusters of three groups. (ns: p > 0.05; *p <  = 0.05; **p <  = 0.01; ***p <  = 0.001; ****p <  = 0.0001) 
(HC = healthy control; M = moderate COVID-19; S = severe COVID-19) t-SNE plots on the bottom panels show 
the distribution of each immune cell cluster. (red dot = HC; blue dot = M; green dot = S) (c) Enrichment scores of 
glycolysis and oxidative phosphorylation (OXPHOS) pathways across cell clusters of three groups.
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Discussion
COVID-19 is a novel viral infection disease of which the most representative manifestation is severe pulmonary 
 inflammation4. An excessive inflammatory process is known as a main factor that leads to pulmonary destruc-
tion and even  death32. Many approaches to treating patients with severe COVID-19 by controlling the immune 
response using immunomodulators such as dexamethasone, interleukin-6 inhibitors or tumor necrosis factor 
blockers have been  reported33, 34. Currently, COVID-19 patients can be classified into mild, moderate, severe/
critical diseases based on clinical symptoms according to the National Health Commission of China  guidelines35, 
and the classification of disease severity in COVID-19 is critical for the grading treatment of patients. Indeed, 
evaluation of the severity of the immune response is needed to select patients who urgently need anti-inflamma-
tory treatment if the immune modulation strategy becomes an important treatment option for severe COVID-19. 
Moreover, it might be useful in optimizing the allocation of medical resources and preventing the occurrence of 
overtreatment and undertreatment in the outbreak of an epidemic. However, to the best of our knowledge, effi-
cient indicators for the severity of COVID-19, therapeutic response, and outcome have not been fully elucidated. 

Figure 3.  Discovery of targetable marker protein of severe COVID-19. (a) Venn diagrams representing 
intersection between markers for specific subtype of macrophages of each patient group (M01 and M03 for 
severe COVID-19, M04 for moderate COVID-19, and M02 for healthy control), the Surfaceome database, and 
the PET tracer database. In DEG analysis by both Wilcoxon test and likelihood-ratio test, the targetable surface 
proteins were SLC43A2 and SLC2A3 for M01 and FOLR2 for M03. HRH2 was selected as a targetable surface 
protein in DEG analysis by Wilcoxon test. On the contrary, FLT1 was selected in DEG analysis by likelihood-
ratio test. (b) A dot plot representing expression of the top 10 surface markers in specific macrophage subtypes. 
The dot size represents the fraction of cells expressing a specific marker in a particular cluster, and the intensity 
of color indicates the average expression in that cluster. (c) FPR1, which is mostly expressed in the M01 cluster, 
is suggested as an example of a potential imaging and surface target for severe COVID-19 patients. For the left 
panel, t-SNE plots represent cells acquired from healthy controls and moderate and severe COVID-19 patients, 
respectively.
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Some previous studies have proposed clinical symptoms, laboratory, and radiologic findings as diagnostic tools 
for the classification of COVID-19  severity36. Our study suggests targetable molecules reflecting the different 
compositions of immune cells according to the severity of COVID-19, indicating that imaging and therapeutic 
targeting of specific molecules of hyperinflammation in severe COVID-19 may provide a new feasible strategy 
of stratification and precision immune modulation in COVID-19.

We explored expression of alleged imaging targets to assess the feasibility of existing molecular imaging 
probes for inflammation. Notably, SLC2A3 (GLUT3) was highly expressed in macrophages enriched in severe 
COVID-19 patients. In addition, these macrophages showed enhanced glycolysis and relatively low OXPHOS. 
These findings support the evaluation of glucose metabolism in inflammatory lesions and can provide informa-
tion on the immunologic response associated with severe COVID-19. Notably, by reflecting enhanced glucose 
metabolism in inflammatory cells, particularly macrophages,  [18F]FDG PET has been commonly employed in 
clinical settings for identifying inflammatory or infection foci and evaluating the severity of  inflammation37. 
A recent case series also showed increased FDG uptake in COVID-19-related inflammation in the lungs and 
lymph  nodes38. Our results suggest that  [18F]FDG PET can be utilized to stratify COVID-19 patients with severe 
pulmonary inflammation, as enhanced glucose uptake and glycolysis were found to be associated with subtypes 
of macrophages in severe COVID-19 compared with moderate disease. Imaging-based characterization has 
advantages in reflecting the metabolic aspects of macrophages related to severe COVID-19 and evaluating the 
whole body to localize hyperinflammation. In addition to the pulmonary system, other organs, such as the liver 
or kidney, can be affected by SARS-CoV-23. Considering the availability of  [18F]FDG PET imaging and that 
can cover the whole body, it can be used for the diagnosis of systemic inflammation caused by SARS-CoV-2. 
Although further clinical validation is required, the degree of FDG uptake in inflammatory lesions in the lung 
can be used as a predictable finding of hyperinflammation by suggesting macrophage subtypes with enhanced 
glucose metabolism.

We further explored candidate molecules for imaging and druggable targets using databases. It is notable 
that SLC2A3 (GLUT3) was selected in this analysis, and this result indicates that it is a good candidate for tar-
geted imaging reflecting immune cells in severe COVID-19 patients. Other surface molecules associated with 
druggable targets were also identified; FOLR2 was another candidate imaging target for the severe COVID-19 
group. The folate receptor is a molecular target used to diagnose inflammatory  diseases39. This result is consistent 
with a previous animal study that showed the possibility of imaging FOLR2-positive macrophages in acute lung 
 inflammation40. In addition, we focused on surface targets that bind to druggable molecules. CCR1 and FPR1 
were highly expressed in macrophages enriched in the severe COVID-19 group. Notably, these proteins were 
revealed to be highly expressed in myeloid clusters also in the validation studies. Specifically, a study originally 
published with GSE147143 data showed the neutrophil cluster was associated with severe COVID-19 compared 
with healthy  controls27. The cluster showed high expression of our suggested markers, CCR1, FPR1 as well as 
SLC2A3. Among them, SLC2A3 and FPR1 demonstrated high expression in the severe COVID-19 in PBMC 
samples. Specific druggable molecules for these targets are indicated in BindingDB. In particular, FPR1 is a G 
protein-coupled receptor expressed in macrophages. There is a previous study reporting the feasibility of FPR1 
targeted imaging to diagnose macrophage infiltration in inflammatory  diseases41. As FPR1 is targeted by small 
peptides (cFLFLF), it can be applied to active targeting drug delivery systems as well as molecular  imaging31. 
Furthermore, FPR1 is reported to have a role in regulating or modulating the immune response in cancer and 
 inflammation42. As immunomodulation or immunoregulation has recently been emphasized as a treatment 
strategy in COVID-1943, FPR1 may be an appropriate target not only for assessing disease severity but also 
for delivering therapeutic drugs. We identified various druggable molecules specifically binding to markers of 
macrophages enriched in severe COVID-19 (Supplementary Table), and the findings may be used to develop 
an appropriate drug delivery and imaging platform for precise immune modulation strategies in COVID-19. 
In other words, the present results indicate that the target molecules explored can be applied to diagnose severe 
pulmonary inflammation due to SARS-CoV-2 shortly.

We explored candidates of surface target molecules from some subsets of macrophages. It is unclear that 
macrophages expressing the target protein specifically cause a hyperinflammatory response. However, numbers 
of M01/M03/M04, which were selected as specific macrophage subsets for the severe COVID-19 and moderate 
COVID-19 were occupied the majority in each group and patient (Fig. 1b, Supplementary Fig. S3). Thus, the 
suggested molecules may be useful to identify specific macrophages specifically presenting in COVID-19 patients 
with hyperinflammation. Additionally, the suggested targetable markers are overlapping with conventional mark-
ers such as SLC2A3 or FOLR2. They are expressed in immune cells of other inflammatory diseases. However, 
our point is not a differential diagnosis of severe COVID-19 from other disease entity but focusing on specific 
markers in severe inflammation among COVID-19 entity. COVID-19 is primarily diagnosed by PCR examina-
tion for viral genome. After identification of SARS-CoV-2, the suggested idea can be applied to stratification or 
early diagnosis of hyperinflammation.

There are limitations in the present study. Because we analyzed cells from BAL fluid, the results may not be 
entirely consistent with the immune cell composition or protein expression of the lung tissue itself. Nonetheless, 
the characteristics or composition of cells in BAL fluid reflect immune cells of the lung associated with inflamma-
tion. Thus, targeted imaging of the identified molecules can be applied to in vivo settings. Also, protein expression 
is not always correlated with level of mRNA transcripts. It is a limitation that this study cannot assure sufficient 
concentrations of protein expression. Nevertheless, in selection of target proteins, the specificity of protein and 
presence of targetable tracer are important as well as expression level of protein. If a protein is expressed a lot 
but non-specifically, it is not appropriate for a candidate of target protein. The significance of this study is that 
specificity of RNA expression was suggested as a basic knowledge for further development. Further study is 
warranted to validate protein expression with experimental methods such as flow cytometry.
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Taken together, we demonstrate different compositions of immune cells in BAL fluid from healthy controls 
and COVID-19 patients. The subpopulations of macrophages differed among the three groups. Regarding alleged 
imaging markers, SLC2A3 was abundant in macrophage subtypes enriched in severe COVID-19 patients, and 
we identified SLC3A2, SLC2A3, and FOLR2 as candidate molecules as imaging targets. In addition, various 
molecular targets, including CCR1, FPR1, and GPR183, are suggested as candidates for drug delivery systems as 
well as imaging. This work provides a resource to develop targeted imaging and therapeutic strategies for severe 
pulmonary hyperinflammation related to COVID-19.

Data availability
The single-cell RNA-sequencing data can be downloaded from the Gene Expression Omnibus database (https:// 
www. ncbi. nlm. nih. gov/ geo/).
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