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molecules to ensure better therapeutic 
efficacy.[4] In 1995, Doxil, a doxorubicin-
loaded PEGylated liposome, was approved 
by the U.S. Food and Drug Administration 
(FDA) and became the first nanomedi-
cine approved for clinical use.[5] Cur-
rently, there are approximately two dozen 
FDA-approved nanomedicines, including 
lipid-based, polymer-based, and iron-
oxide-based nanoparticles.[4]

Generally, nanomedicines have a size 
range of 10–150  nm and demonstrate 
significantly different pharmacokinetics 
compared to conventional small-molecule 
drugs.[6] Unlike small-molecule drugs, 
nanomedicines are not freely diffusible into 
tissues and tend to reside in the vascular 
space after intravenous administration. In 
most cases, nanomedicines are removed 
from circulation through opsonization 

by serum proteins followed by phagocytosis by the reticuloen-
dothelial system (RES). Various surface modification methods, 
including PEGylation and the introduction of self-peptides, have 
been introduced to delay opsonization and thus prolong circula-
tion times. By prolonging the circulation time of nanomedicines, 
the delivery efficiency can be enhanced. This enhanced delivery 
of nanomedicines realized by prolonged circulation times is 
clearly seen in diseased tissue, such as tumors or inflammatory 
regions, but is not prominent in normal tissues.[7] This phenom-
enon is called enhanced permeability and retention (EPR) and 
has become a major theory explaining the improved delivery 

The intratumoral accumulation of nanomedicine has been considered a 
passive process, referred to as the enhanced permeability and retention 
effect. Recent studies have suggested that the tumor uptake of nanomedi-
cines follows an energy-dependent pathway rather than being a passive 
process. Herein, to explore the factor candidates that are associated with 
nanomedicine tumor uptake, a molecular marker identification platform 
is developed by integrating microscopic fluorescence images of a nano-
medicine distribution with spatial transcriptomics information. When this 
approach is applied to PEGylated liposomes, molecular markers related 
to hypoxia, glycolysis, and apoptosis can be identified as being related to 
the intratumoral distribution of the nanomedicine. It is expected that the 
method can be applied to explain the distribution of a wide range of nano-
medicines and that the data obtained from this analysis can enhance the 
precise utilization of nanomedicines.

ReseaRch aRticle

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/smtd.202201091.

1. Introduction

Nanomedicines hold great promise to improve disease diag-
noses and treatments in those with various illnesses, including 
cancer,[1] immunological diseases,[2] and infectious diseases.[3] 
Nanomedicine is developed based on nanotechnology and has 
several advantages over conventional drug platforms. First, 
it is capable of loading imaging contrast for enhanced diag-
nostic imaging. Second, surface modifications and decorations 
of targeting moieties for enhanced drug delivery are possible. 
Finally, it is relatively simple to load various types of treatment 

J. Park, H.-J. Im
Department of Molecular Medicine and Biopharmaceutical Sciences
Graduate School of Convergence Science and Technology
Seoul National University
Seoul 08826, Republic of Korea
J. Choi, H.-J. Im
Department of Applied Bioengineering
Graduate School of Convergence Science and Technology
Seoul National University
Seoul 08826, Republic of Korea
J. E. Lee
Portrai Inc
Seoul 03136, Republic of Korea

H. Choi
Department of Nuclear Medicine
Seoul National University College of Medicine
Seoul 03080, Republic of Korea
E-mail: chy1000@snu.ac.kr
H. Choi
Department of Nuclear Medicine
Seoul National University Hospital
Seoul 03080, Republic of Korea
H.-J. Im
Cancer Research Institute
Seoul National University
Seoul 03080, Republic of Korea
E-mail: iiihjjj@snu.ac.kr
H.-J. Im
Research Institute for Convergence Science
Seoul National University
Seoul 08826, Republic of Korea

Small Methods 2022, 2201091

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmtd.202201091&domain=pdf&date_stamp=2022-09-30


© 2022 Wiley-VCH GmbH2201091 (2 of 13)

www.advancedsciencenews.com www.small-methods.com

efficiency of nanomedicines compared to conventional small-
molecule drugs. The EPR effect was considered a passive process 
due to leaky neovascularization and limited lymphatic drainage 
in diseased tissues compared to normal tissues.[8]

Recently, the notion that enhanced tumor accumulation of 
nanomedicines is a passive process has been challenged. An 
in vivo imaging study based biodistribution analysis using 
radiolabeled PEGylated liposomes showed that markers for 
blood and lymphatic vessel density were not significantly associ-
ated with the tumor accumulation levels, in contrast to the prior 
hypothesis.[9] Furthermore, the quantified number of endothe-
lial gaps in tumor vasculature is too low to explain the tumor 
accumulation of the nanoparticles and 97% of the nanoparticles 
accumulate in the tumor via an active process according to the 
simulation.[10] However, it is very challenging to identify markers 
that govern active process of the nanomedicine tumor accumu-
lation. So far, only a few potential RNA or protein markers can 
be analyzed by immunohistochemistry (IHC) or reverse tran-
scription polymerase chain reaction (RT-PCR).[9,11] The next-
generation sequencing (NGS) technology now can provide an 
unbiased exploration of the molecular markers. Since tumor 
uptake of nanoparticles is heterogeneous within the tumor,[12] 
it is difficult to find factors that determine nanoparticle uptake 
by conventional RNA sequencing method that obtains the 
average value of gene expression in the tissue without spatial 
information.[13]

Recent technological advances have established spatial tran-
scriptomics (ST) that can systematically identify the expression 
levels of all genes throughout the tissue space.[14] Because ST 
data inherently possesses spatial information, it can be easily 
integrated with other types of imaging data and is considered 
most appropriate for analyzing spatially heterogeneous infor-
mation within tissues.[14b] Meanwhile, it is easily possible to 
determine the distribution of nanomedicines within the tumor 
by using fluorescently labeled nanomedicines.[15] Therefore, we 
hypothesized that molecular factors related to heterogeneous 

nanomedicine tumor uptake can be identified by the integra-
tion of ST data and fluorescent imaging in cancer tissue after 
the injection of a fluorescently labeled nanomedicine.

2. Results and Discussion

2.1. In Vivo and Ex Vivo Fluorescence Imaging of a Mouse 
Syngeneic Tumor

In this study, a PEGylated liposome was selected as a model 
nanomedicine, as these liposomes are undoubtedly among the 
most successful nanomedicine platforms. Also, factors deter-
mining the high uptake of PEGylated liposomes remain contro-
versial, as noted in the previous study.[16] To select an ideal form 
of PEGylated liposomes, we synthesized four different types 
of PEGylated liposomes, which are large less PEGylated lipo-
some (LLP), large highly PEGylated liposome (LHP), small less 
PEGylated liposome (SLP), and small highly PEGylated liposome 
(SHP) (Figure S1A, Supporting Information). We intravenously 
injected the nanoparticles to 4T1 tumor-bearing mice (n = 3 for 
each group) and obtained in vivo/ex vivo fluorescence imaging 
using an in vivo fluorescence imaging system (IVIS). We found 
that highly PEGylated liposomes demonstrated higher tumor 
uptake compared to less PEGylated liposomes and there was 
no significant difference between large and small PEGylated 
liposomes (Figure S1B,C, Supporting Information). In addition, 
polydispersity index (PDI) of LHP was slightly smaller than that 
of SHP, therefore, we chose LHP for further experiments and 
described LHP as PEGylated liposomes. Transmission electron 
microscopy (TEM) images of PEGylated liposomes showed a 
uniform and round shape, allowing the identification of a typ-
ical lipid bilayer of liposomes. The hydrodynamic sizes of the 
fluorescent liposomes were 291.73 ± 8.81  nm. The maximum 
absorbance wavelength was 550  nm and the maximum emis-
sion wavelength at 550 nm excitation was 563 nm (Figure 1A). 

Figure 1. Fluorescence imaging of DiI-loaded liposomes. A) The characterization profile of DiI-loaded liposome using transmission electron micros-
copy (TEM), dynamic light scattering instrument (DLS), and microplate reader. The DLS result was expressed by mean size ± SD. B) In vivo fluores-
cence imaging of 0, 4, and 24 h after intravenous injection in 4T1 breast tumor model. C) Ex vivo fluorescence imaging of main organs (liver, spleen, 
kidneys, heart, lung, tumor, and muscle).
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We observed that PEGylated liposomes accumulated in the 4T1 
tumor in all three mice tested (Figure 1B). Also, ex vivo fluores-
cence imaging of normal organs and tumors were obtained 24 h 
after the injection (Figure 1C). Fluorescent signals were observed 
mainly in the tumors and livers. Also, minimal fluorescence 
signals can be seen in kidneys, spleen, and lungs. The biodis-
tribution pattern of the fluorescent liposomes was similar to the 
previously reported biodistribution of PEGylated liposomes in 
tumor-bearing mice.[17]

2.2. H&E Staining, Spatial Transcriptomics, and Fluorescence 
Imaging of the Tissue

Among the three excised tumors, the tumor with the highest 
fluorescent signal was selected for further experiments. We 
obtained two consecutive sections from the tumor, and the one 
section was used for hematoxylin and eosin (H&E) staining 
and ST analysis (Figure 2A), and the other was used for fluo-
rescence imaging (fluorescent liposome distribution map) 
(Figure 2B). Spatial mapping of RNA reads indicated a cancer-
rich region that showed the highest gene expression, with the 
necrotic region, the lower and right part of the tissue, showing 

the lowest (Figure S2, Supporting Information). According to 
the fluorescence image, the fluorescent signal was prominent 
in the tumor capsule area, with multiple foci of increased fluo-
rescent signal found in the inner region of the tissue. Next, we 
obtained a binary map of the fluorescence image, and the map 
was matched with ST spots for further analyses (Figure 2B–E). 
The pattern of the average fluorescence intensity according to 
the distance from the surface was different from the mathemat-
ical model for simple passive diffusion (Figure 2F). The numer-
ical analysis results of Fick’s law were obtained to predict the 
passive process of fluorescent liposome distribution using the 
vascular marker, Pecam1. The distribution did not concur with 
the actual fluorescent liposome distribution and especially could 
not explain the intratumoral uptake of nanoparticles. This was 
the same with another representative pan-endothelial marker, 
Cd34 (Figure 2B,G,H; and Figure S3, Supporting Information).

2.3. Hbb-bs was Partially Related to the Fluorescence Liposome 
Distribution

First, we derived differentially expressed genes (DEGs) related 
to the high accumulation of fluorescent liposomes in the tumor 

Figure 2. Tumor sections and initial exploration of data. A) H&E staining image representing the overall histological features. A serial process beginning 
from original fluorescence image included B) fluorescence image normalization, C) image registration, D) image binarization, and E) acquiring binary 
map corresponded to the binary image. F) A map colored by the distance from the left-most surface region and the average fluorescence intensity 
according to the distance. The values were expressed by mean ± SD. G) Spatial feature plots of Pecam1 and Cd34 and H) simulation results of Fick’s 
diffusion annotated by C/k with different D/Δx2 values.
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section by comparing high versus low uptake spots using 
binary fluorescence imagery. We found that there was only one 
significant gene, Hbb-bs (Figure 3A; and Table S1, Supporting 
Information). Hbb-bs encodes a beta polypeptide chain found 
in hemoglobin in red blood cells (RBCs) and considered as one 
of the RBC markers.[18] Consistently, we found that the expres-
sions of vascular markers (e.g., Pecam1, Cd34) were similar to 
the distribution of Hbb-bs. This result implied that the fluores-
cent liposome distribution is partially associated with blood cir-
culation (Figure 3A).

We determined the principal components (PC1, PC2, and 
PC3) in the fluorescent image of the tumor tissue by using spa-
tial gene expression patterns by deep learning of tissue images 
(SPADE) algorithm.[19] The most variable latent feature of the 
fluorescence image (i.e., PC1) showed a pattern similar to that 
of the distribution of fluorescent liposomes (Figure  3B). We 
obtained PC1-associated genes (SPADE genes) and demon-
strated them using enhanced volcano plots (Figure 3C). Among 
the SPADE genes, it is noteworthy that Ctsk, Lbp, Sparcl1, and 
Apod were high-ranked and up-regulated genes, which are 
abundant in the extracellular matrices (ECMs) of the stromal 
region (Figure 3D; and Table S2, Supporting Information). This 
finding is in line with the previous observation that nanopar-
ticle tumor uptake is associated with capillary wall collagen.[11] 
Also, it is well known that Apod can be found in the early stage 
of tumor development among the apolipoproteins, consistent 
with the present experimental condition.[20] The SPADE genes 
were associated with regulation of smooth muscle cell prolif-
eration and fibronectin binding according to the gene ontology 
analysis (Figure  3E). To further investigate the association 
between the expression of Hbb-bs and the nanomedicine distri-
bution, we conducted a correlation analysis of the fluorescent 
signal intensity and the expression level of Hbb-bs within high-
uptake spots. There was no statistically significant correlation 
between Hbb-bs expression level and fluorescence intensity 
(r  = 0.073, p-value = 0.188). It means that Hbb-bs was shown 
only to reflect the environment of peripheral accumulation 
of nanoparticles, but not a key player to govern the uptake of 
nanoparticles.

2.4. Division of Uptake Pattern Clusters and Cell Type Analysis

Hbb-bs and SPADE genes were found to be partially related to 
the fluorescent distribution of nanomedicines in the tissue. 
However, the expression pattern of the genes did not match 
the inner uptake clusters of the tumor (Figures  2B vs  3A,D). 
We speculated that the nanoparticle (NP) uptake mechanisms 
on the surface and in the inner area of the tumor could differ, 
therefore the uptake patterns were analyzed using image fea-
ture-based clusters. The regions of fluorescent image were 
clustered using a CNN-based features based on tiles of the 
image and K-means clustering. K was set to 4 as the min-
imum requirement for the division of the peripheral area from 
the inner area (Figure S4, Supporting Information). Also, we 
obtained two clusters of high-uptake spots (cluster 1: surface 
cluster, cluster 2: inner cluster) by matching the regions with 
the binary map (Figure 4A). Through the unsupervised hier-
archical clustering of spots in cluster 1 and 2, outliers were 

defined as incoherent spots between the uptake pattern clus-
ters and the newly formed clusters and eliminated for further 
analyses (Figure S5, Supporting Information).

We then analyzed the cell distribution of the clusters 
using three different types of cell-type prediction methods: 
multimodal intersection analysis (MIA),[21] robust cell type 
decomposition (RCTD),[22] and domain adaptation-based cell 
type inference in spatial transcriptomic data (CellDART).[23] 
Using MIA, fibroblasts and endothelial cells were preferen-
tially discovered in cluster 1, while cancer cells were found to 
be predominant in cluster 2 (Figure  4B). In the RCTD anal-
ysis, cancer cells were dominant in both clusters and endothe-
lial cells and fibroblasts were the major cell types in cluster 1 
(Figure 4C). We could confirm the relatively dominant distri-
butions of endothelial cells and fibroblasts in cluster 1 com-
pared to cluster 2, an outcome similar to the results of the 
MIA analysis. Results of CellDART verified the observations 
from the MIA analysis and RCTD assessment (Figure  4D). 
Cancer cells are dominant in the tumor tissue while endothe-
lial cells and fibroblasts are clearly observed in the surface 
region of the tumor according to CellDART. Also, the pres-
ence of inflammatory macrophages from the MIA assay 
and the dominance of cancer cells in the RCTD assay were 
reflected in the CellDART results.

2.5. Identification of DEGs and Uptake-Associated Genes 
in Cluster 1 and 2

We conducted DEG analysis of cluster 1 and 2 by comparing 
cluster 0 versus 1 and 0 versus 2, respectively. Volcano plots of 
DEGs showed different genetic profiles between cluster 1 and 
2 (Figure 5A,B; and Tables S3 and S4, Supporting Informa-
tion). In addition, a dot plot representing the top 20 DEGs for 
each cluster verified the uniqueness of each cluster (Figure 5C). 
DEGs of cluster 1 were similar to the result of the previous 
analysis using the entire tissue slide. For example, we could 
observe RBC markers such as Hbb-bs, Hba-a1, and Hba-a2 and 
stromal genes such as Apod, Aqp1, Col3a1, Gpx3, Apoe, and 
Sparcl1 among the top 20 DEGs in cluster 1 (Table S3, Sup-
porting Information).

The DEGs in cluster 1 showed no significant correlation with 
the fluorescent signal (Figure  5D). On the other hand, there 
were a total of 31 genes that were upregulated and positively 
correlated with fluorescence intensity in cluster 2 (Figure  5D; 
and Figure S6 and Table S5, Supporting Information). These 
genes were associated with three representative physiolog-
ical functions of cancer in gene ontology: hypoxia, glycolysis, 
and apoptosis (Figure  5E; and Table S5, Supporting Informa-
tion). When plotting the scores of three gene ontology (GO) 
terms, the spatial distribution of the scores were all colocalized 
(Figure 5F), and the distribution was similar to the internal dis-
tribution of the nanoparticles (Figure 2B).

The DEGs from the clusters may simply be region-associated  
genes because the spots in the clusters are spatially close. How-
ever, we speculated that the DEGs having statistically signifi-
cant correlations with fluorescence intensity within the cluster 
are truly associated with nanomedicine uptake process. Several 
previous studies have reported that a hypoxic condition can 
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Figure 3. Results of overall fluorescence analysis. A) A spatial feature plot of the only differentially expressed gene (DEG), Hbb-bs. B) Image latent 
features generated by SPADE algorithm. PC1, PC2, and PC3 referred to principal component 1, and so on. C) Enhanced volcano plot with top 1000 vari-
able genes. D) Spatial feature plots of top 8 SPADE genes with highest fold change (FC). E) GO analysis for PC1 SPADE genes of top 30 up-regulated 
genes according to biological process (BP), cellular component (CC), and molecular function (MF). Top 3 positive GO terms for each category were 
considered and p values were adjusted by B&H method.
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Figure 4. Results of subgroup fluorescence analysis. A) A process determining uptake clusters beginning from registered fluorescence image. B) MIA 
analysis for cluster 1 and 2. p values were acquired by using hypergeometric cumulative distribution and were represented by the color bar. C) Results 
of cell type population derived from RCTD algorithm. D) Spatial feature plots representing each cell type occurrence acquired from the results of Cell-
DART algorithm. In each spot, the sum of the occurrences of all cell types is 1.
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Figure 5. Discovery of uptake-associated genes. Volcano plots of uptake DEGs of cluster A) 1 and B) 2. The numbers of genes are shown below and 
all the p values less than 0.05 were considered significant. C) A dot plot representing expression of top 20 DEGs of cluster 1 and 2. D) Volcano plots 
showing the relationship between correlation coefficients and p-values in cluster 1 and 2. The numbers of genes are shown below. E) GO analysis 
for DEGs with significant correlation of cluster 2 according to biological process (BP), cellular component (CC), and molecular function (MF). Top 4 
positive GO terms for each category were selected and p values were adjusted by B&H method. F) The fluorescence image and spatial feature plots of 
scores derived from hypoxia, glycolysis, and apoptosis genes. The scores were calculated by AddModuleScore in Seurat package.
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enhance NP uptake in cancer cells.[24] According to our unbi-
ased methods, markers related to hypoxia can be identified to 
be associated with the PEGylated liposome tumor distribution. 
We found that one of the most important glycolysis mediator 
genes, Pfkp, appeared to be an uptake-associated gene in 
cluster 2, as well (Tables S4 and S5, Supporting Information). 
It is well known that a hypoxic condition in cancer tissue 
enhances the glycolysis of cancer cells.[25] Also, a previous 
study showed that a significant correlation existed between 
the degree of hypoxia and glucose metabolism as assessed 
by in vivo positron emission tomography (PET) in patients’ 
tumors.[26] Because a lack of energy generation is prevalent 
in cancer cells due to the low efficiency of hypoxic metabo-
lism, starvation-induced apoptosis can be triggered.[27] Also, 
molecular markers related to lipid metabolism were found to 
be uptake-associated genes. Hypoxia can reprogram a number 
of genes related to energy metabolism. In recent years, a link 
between hypoxia and lipid metabolism was also revealed. In 
particular, endocytosis of lipoproteins is enhanced by the 
upregulation of lipoprotein receptor-related protein (LRP1) [28]  
and very-low-density lipoprotein receptor (VLDLR).[29] Thus, 
we speculated that several hypoxia-induced metabolism-
related genes, such as Ndrg1, which participates in low-density 
lipoprotein receptor trafficking and lipid metabolism, play an 
important role in the uptake of PEGylated liposomes. Plin2, 
one of the DEGs in cluster 2 may also be linked to this specu-
lation, as the gene is involved in the hypoxia-inducible lipid 
droplet-associated protein with Hif-1α. Meanwhile, we con-
ducted a correlation analysis of the uptake-associated genes 
to find an association between each pair of genes (Figure S7, 
Supporting Information). Most of the genes were clustered 

as set a-1, a-2, and a-3, which are correspondingly related to 
“hypoxia + glycolysis,” “hypoxia + apoptosis,” and “apoptosis 
only.” Also, a heatmap indicated that most genes showed 
strong connectivity, possibly due to a common biological con-
text, except for the three genes in set b.

2.6. Validation of Uptake-Associated Genes

Immunofluorescence (IF) experiments were performed in 
tumor tissues from four different 4T1 tumor-bearing mice to see 
if the marker expressions at protein level can reflect the intratu-
moral distribution of PEGylated liposomes. Anti-Vdac1 antibody 
was prepared for IF as the correlation coefficient with the gene 
and the nanoparticle uptake was the highest among uptake-asso-
ciated genes in cluster 2. Anti-Pecam1 antibody was also pre-
pared because it is a marker for tumor angiogenesis,[30] which 
has been thought to be a major factor to drive the uptake of 
nanoparticles according to the passive pathway of EPR effect.[8a] 
When fluorescence signals from IF and PEGylated liposome was 
compared, the PEGylated liposome uptake pattern was more 
concurred with IF using anti-Vdac1 antibody compared to that 
using anti-Pecam1 antibody in all four samples. In addition, we 
performed correlation analysis between the fluorescence signals 
of the PEGylated liposome and the IF images using the anti-
bodies, the correlation coefficient between PEGylated liposome 
and Vdac1 was significantly higher than that between PEGylated 
liposome and Pecam1 (p-value = 0.01) (Figure 6).

To verify reproducibility and robustness of ST analysis from 
the first sample (Sample A-1), two more ST datasets were 
acquired: one from the same tumor tissue (Sample A-2) and 

Figure 6. Results of IF validation study. A) Liposome fluorescence images and IF images of anti-Vdac1 primary antibody and anti-Pecam1 primary anti-
body from 4 different 4T1 tumor tissues. B) Pearson correlation analysis between the IF images of antibodies and the fluorescent liposome distributions. 
The correlation coefficient between the IF images of anti-Vdac1 antibody and the liposome fluorescence images was 0.66 ± 0.03; on the other hand, 
the correlation coefficient between the IF images of anti-Pecam1 antibody and the liposome fluorescence images was 0.52 ± 0.07. One-way ANOVA 
between the two showed a p-value of 0.01, rejecting the null hypothesis that there is no difference between the two. C) Local IF results showing that 
anti-Vdac1 antibody is a better indicator of fluorescent liposome distribution than anti-Pecam1 antibody.
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the other from another 4T1 tumor-bearing mouse (Sample B). 
By addressing the former and the latter dataset, we assumed 
that the molecular markers obtained from the first sample 
were tested under intratumoral heterogeneity and intertu-
moral heterogeneity for each. Division of uptake pattern clus-
ters, CellDART analysis, and subgroup fluorescence analysis 
were processed the same as Sample A-1 (Figures S8–S13,  
Tables S6 and S7, Supporting Information). When investi-
gating the degree of association for each gene set term (e.g., 
uptake-associated genes in cluster 2), we could find a statisti-
cally significant association between Sample A-1 and Sample 
A-2 or between Sample A-1 and Sample B (Figure 7). Similar to 
Sample A-1, the uptake-associated genes in cluster 2 included 
genes related with hypoxia in Sample A-2 (Table S6, Supporting 
Information) and glycolysis, hypoxia, and apoptosis in Sample 
B (Table S7, Supporting Information). Also, there were common 
genes in uptake-associated genes in cluster 2 from different 
samples. Especially, Higd1a was an uptake-associated gene in all 
three samples. Higd1a is one of the markers for tumor hypoxia 
and regulates cellular reactive oxygen species and oxygen 
consumption to enhance cancer cell survival.[31] Also, when 
drawing spatial feature plots of Higd1a, the spatial patterns of 

the gene were well matched with the fluorescence images of 
PEGylated liposomes (Figure 7C). In addition, merged scores of 
hypoxia, glycolysis, and apoptosis can well represent the intra-
tumoral uptake pattern of PEGylated liposomes (Figure S14 and 
Table S8, Supporting Information).

Heterogeneity in EPR-mediated nanomedicine delivery is 
considered to be a cause of heterogeneous outcomes in clinical 
trials of nanomedicines. To improve clinical outcomes, predic-
tive biomarkers for the EPR effect should be established. There-
fore, molecular markers to predict the efficiency of EPR are 
urgently needed to design successful clinical trials. Currently, 
several methods are suggested as EPR markers, including com-
panion imaging biomarkers using radiolabeled nanoparticles 
and serum markers related to tumor stroma.[32] We believe that 
the molecular markers found by our platform can be used as 
precise EPR markers after validation in other types of cancer 
models. After the validation steps, the EPR markers can be used 
as predictive biomarker for the nanomedicine. Also, the mole-
cular markers found in this study can be utilized to enhance 
the EPR effect using a gene-drug interaction database. For 
example, integrative LINCS database (http://www.ilincs.org/
ilincs/) provides a list of small-molecule drugs that enhance or 

Figure 7. Results of ST validation study. A) A table of a statistical testing for each item. Fisher’s exact test, which tests the null hypothesis that the given 
two sets are independent of each other, was performed for each item. A p-value of less than 0.05 means that there is a lack of independence between 
the two sets, so it can indicate an association between the sets. For example, in the item of “Uptake-associated genes in cluster 2” between Sample A-1 
and Sample B, out of a total of 32 285 genes, 31 genes in Sample A-1, 14 genes in Sample B, and 5 common genes between them were found, resulting 
in -log10 p-value = 11.94. The p-value is expressed on a color scale. B) A Venn diagram of uptake-associated genes in cluster 2 demarcated by Sample 
A-1, Sample A-2, and Sample B. C) Spatial feature plots with 3 ST datasets on only one common gene, Higd1a.
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inhibit the molecular process when the molecular markers are 
provided. The enhancer identified by the database can be used 
to enhance the EPR effect of the nanomedicine. Taken together, 
the molecular markers found by the platform here may provide 
potential to optimize the precise utilization of nanomedicines 
by predicting the EPR effect and finding EPR enhancers for the 
nanomedicines.

In this study, we tested only one example nanomedicine in 
one tumor model, PEGylated liposome and 4T1 tumor model, 
respectively. The tissue distribution of a nanomedicine can 
be affected by materials, surface modifications, and possibly 
by internal drug loads. Therefore, the result from this study 
cannot be generalized to other types of nanomedicine. How-
ever, if there is a target nanomedicine and target cancer tissue, 
this new method can then be used to optimize the component 
and surface chemistry of the nanomedicine to obtain a better 
tissue distribution pattern. In addition, a temporal approach 
should be investigated later for more accurate conclusions.

3. Conclusion 

Herein, we developed a molecular marker identification plat-
form for nanomedicine distributions by integrating ST data 
and fluorescence nanomedicine distribution imagery. The 
molecular markers related to hypoxia, glycolysis, and apoptosis 
are associated with the intratumoral distribution of PEGylated 
liposomes. An interdisciplinary approach including image pro-
cessing, an artificial intelligence-algorithm-based gene analysis, 
biological annotations, and flexible interpretations of compli-
cated mass transfer events were all involved in the development 
of the marker identification platform. We believe that this plat-
form can be applied to a variety of tissues and other types of 
drugs, such as peptides, antibodies, and antibody drug conju-
gates, for the exploration of novel molecular markers related to 
drug distributions. Moreover, the use of molecular markers can 
enhance the precise utilization of drug candidates.

4. Experimental Section
Materials: 1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC), 

cholesterol, 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine 
perchlorate were purchased from Sigma-Aldrich, Korea. 1,2-Distearoyl-
sn-glycero-3-phosphoethanolamine conjugated polyethylene glycol 
(DSPE-PEG) was purchased from Creative PEGworks. Avanti Mini Extruder 
was purchased from Avanti Polar Lipids. The rabbit anti-VDAC1 antibody 
(ab154856, abcam), rat anti-PECAM-1 antibody (14-0311-82, Invitrogen), 
Alexa Fluor 488 conjugated goat anti-rabbit IgG secondary antibody (A11034, 
Invitrogen), and Alexa Fluor 647 conjugated goat anti-rat IgG secondary 
antibody (A21247, Invitrogen) were used for immunofluorescence.

Synthesis and Characterization of DiI-Loaded Liposomes: Size and 
PEGylation controlled liposomes were synthesized by extrusion method with 
Avanti mini extruder. The liposomes were composed of DSPC, DSPE-PEG, 
cholesterol, and DiI fluorescent dye (λex  = 553  nm, λem  = 570  nm).  
The ratio of DSPC and DSPE-PEG was regulated for synthesizing high 
PEGylated liposome and low PEGylated liposome. Thin-film lipids were 
prepared by vaporizing organic solvents and hydrated by distilled water. 
Hydrated fluorescent liposome layers were extruded using 400 and 200 nm 
pore size membrane filters to make a large size liposome. Smaller sized 
liposome was formed by extrusion using 400, 200, 100  nm pore size 

membrane in order. The hydrodynamic size of DiI-loaded liposomes was 
about 292 nm in a dynamic light scattering instrument (DLS).

4T1 Breast Cancer Model and Fluorescence Imaging: To prepare a 4T1 
syngeneic tumor model, 4T1 breast cancer cells (106 cells/0.02 mL) were 
injected subcutaneously into the BALB/c mice at the right thigh region. 
After 10 days, DiI-loaded liposomes were injected intravenously. In vivo 
fluorescence imaging was performed at 0, 4, and 24 h after injection 
using in vivo imaging system. For the verification of liposome distribution 
in organs, mice were sacrificed 24 h after injection. The main organs 
(heart, lung, kidney, liver, spleen, muscle, and tumor) were collected and 
observed by in vivo imaging system for fluorescence imaging.

Acquisition of Spatial Transcriptomics (ST) Library, H&E Staining Image, 
and Fluorescence Image: Fresh tumor samples were embedded in the 
mold with optimal cutting temperature (OCT) compound for cryo-
sectioning. ST library was acquired by several steps: cryo-sectioning, 
fixation, permeabilization, cDNA synthesis, and RNA sequencing. All 
the methods were carried out in the way that 10x Genomics visium 
protocol recommended. The fresh tissue samples were embedded in 
OCT compound (25608-930, VWR, USA). Consecutive tissue slices 
were prepared, which were used for H&E staining, ST library, and 
fluorescence imaging. The slices were acquired by thin blades used in 
cryotome so that the fluorescence pattern affected by gene expression 
could be explored thoroughly. The tissue section for ST were placed on 
Visum slides (both Visium Tissue Optimization Slides, 1 000 193, 10X 
Genomics, USA and Visium Spatial Gene Expression Slides, 1 000 184, 
10X Genomics). The fixation was performed under the recommended 
protocol using chilled methanol. The cDNA libraries were prepared 
and sequenced on a NovaSeq 6000 System S1200 (Illumina, USA) at a 
sequencing depth up to 250 m read-pairs.

Raw FASTQ files and H&E images were processed by sample with 
the Space Ranger v1.1.0 software. The process uses STAR v.2.5.1b (Dobin 
et  al., 2013) for genome alignment, against the Cell Ranger (mouse 
mm10 reference package). The process was performed by “spaceranger 
count” commend.

When acquiring a fluorescent image, the parameters were modified 
to avoid the saturation of signal. After acquiring the raw fluorescent 
image, the image was normalized by setting the maximum fluorescence 
value at normal tissue to 0 and the maximum fluorescence value of the 
tissue treated with fluorescent nanoparticles to 1. To avoid confusion in 
terms, “pixel” was used only in the fluorescence image and “spot” was 
used only in the spatial transcriptomics profile. Also, all the following 
analysis procedures were summarized (Table 1).

Image Registration: To fit the shape of the acquired fluorescence image 
to the spatial transcriptomics spots, the image registration process 
based on symmetric diffeomorphic registration[33] implemented by 
Python-based open-source DiPY package. The fluorescence image was 
changed to gray-scale using opencv2 package. For the registration, linear 
rigid transformation was performed after the matching center of masses 
of both images. The rigid and affine transformation processes were 
optimized using mutual information between two gray-scale images. 
After the linear transformation, nonlinear warping process based on 
symmetric diffeomorphic registration algorithm was performed using 
function “SymmetricDiffeomorphicRegistration” with “CCMetric” for 
optimization. The transformed image was visually evaluated.

Annotation of Distance in Spatial Transcriptomics Spots: It is come up 
with the distance from the surface of the tumor and defined the distance 
of spots in the left-boundary region as 0. As the distance was raised 
one by one, the next layer was immediately marked. The map was then 
colored differently depending on the distance. The fluorescence intensity 
values mapped to the spots were averaged for each distance and a 
plot showing the relationship between the distance and the average 
fluorescence intensity was created.

Mathematical Simulation of Diffusion: When illustrating dynamics of 
diffusion, Fick’s law is used typically as follows
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where C is concentration vector, (u, v, w) is velocity vector, D is diffusivity, 
and R is source or sink term. Two assumptions are put to simulate the 
result of the formula. At first, that the number of gaps of blood vessels is 
proportional to the expression level of Pecam1 gene is anticipated. And 
it was thought the tissue sample was close to the median plane of the 
whole tumor, so it got

0, 0w
z
C= ∂

∂ =  (2)

(u, v, w) was regarded as null vector according to the literature.[10] Briefly, 
when assuming cylindrical blood vessels perpendicular to the median 
plane, the fluid velocity at the edge of each spot can be induced by the 
experimentally estimated values

Spot diameter 100 m
Spot height m
Surface area of blood vessels per unit volume of tissue 0.0034 m / m
Number of gaps per unit area of blood vessel 500 gaps mm
(Experimentally estimated flow rate) 0.065 m s gap

Fluid velocity at the edge of each spot m s
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The result of Vedge  =  2.7625  ×  10−6 µm s−1 indicated that the fluid 
velocity could not even account for the movement of nanoparticles in a 
single micrometer over 24 h.

Thus, a numerical approach was used to comprehend the effects of 
the concentration gradient in the absence of the flow rate
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where Δx and Δy were set to be the same. And various simulation results 
of Fick’s diffusion annotated by C/k with different D/Δx2 values and 
numbers of replications were explored.

Differentially Expressed Genes Based on Fluorescence Intensity: Image 
binarization was performed to analyze the fluorescence image pixels 
combined with the spots with transcriptomic data. Spots with high 
fluorescence (high-uptake spots) were distinguished from spots with low 
fluorescence (low-uptake spots) by dichotomy. When making a binary 
image, only pixels with a brightness greater than 25% of the maximum 
fluorescence intensity were selected as high pixels. The fluorescence 
intensity was measured and analyzed by ImageJ (ver 1.8; https://imagej.
nih.gov/ij/download.html). Once the binary image was acquired, the 
binary map was then created in search of the pixel values (i.e., 0 or 1) 
corresponding to the centers of the spots.

To visualize the spots according to gene features, t-distributed 
stochastic neighbor embedding (t-SNE) was employed using the Seurat 
package (version 4.0.5) in R. Spots with RNA reads less than 500 were 
excluded for the following analyses. The perplexity of RunTSNE was 
set to 30. DEGs between high-uptake spots and low-uptake spots were 
explored by Wilcoxon rank sum test on FindMarkers in Seurat package 
with default parameters. Finally, DEGs were sorted by fold change (FC).

Identification of Genes Associated with Image Features: In addition to 
the overall DEG analysis, another approach, spatial gene expression 
patterns by deep learning of tissue images (SPADE), was used.[19] A 
pre-trained VGG16 model extracted 512 features per patch around 
each spot and principal component analysis (PCA) was performed to 
reduce dimensions of features. Top three principal components (PCs) 
were selected to identify SPADE genes. SPADE genes in each PC were 
discovered on empirical Bayes algorithm and linear regression analysis. 
Genes were then sorted by FC.

For visualizing image feature-associated genes, EnhancedVolcano 
function was used with pCutoff of 0.05 and FCcutoff of 0.3. Top 1000 
genes with FDRs below 0.05 were selected, and spatial feature plots of 
top genes with highest FC were represented. For GO analysis, enrichGO 
function was used and p values were adjusted by Benjamini–Hochberg 
(B&H) method. GO analysis was performed according to biological 
process (BP), cellular component (CC), and molecular function (MF) 
using top 30 up-regulated or down-regulated genes. When specifying 
biological annotations, g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) 
was used instead of enrichGO function.

Subgroup Fluorescence Analysis: The fluorescence image was split into 
394 × 384 patches of 5 × 5 patch size and extracted 512 features per each 
patch by using the VGG16 model. And then patches were classified by 
K means clustering according to the features with K of 4. As a result, 
the fluorescence image was separated into 4 regions of interest (ROIs) 
according to the texture. Then, the binary map was merged into 2 
notable ROIs out of 4. As a result, high-uptake spots were separated into 
2 clusters and the other spots were allocated to default 0. In conclusion, 
3 clusters were formed totally. Outliers of each uptake cluster were 
defined as incoherent spots between the uptake pattern clusters and 
newly formed clusters by unsupervised hierarchical clustering of spots 
in cluster 1 and 2. The outliers were then eliminated for further analyses. 
DEGs representing each uptake clusters were generated by comparison 
to the default cluster using FindMarkers in R.

Analysis of Cell Types Associated with Fluorescence Distribution: 
Multimodal intersection analysis (MIA) was performed to comprehend 
which cell type was relevant to each uptake cluster.[21] Single-cell RNA 
sequencing (scRNA-seq) dataset was obtained from the previous 
research of 4T1 tumor model.[34] Marker genes in each cell type were 

Table 1. Summary of the analysis procedures.

Step 1. Modification of the fluorescence image

Python-based open-source DiPY package

Step 2. Modification of the spatial transcriptomics library

All the spots with RNA reads less than 500 (A-1) or 100 (A-2, B) were neglected.

In this condition, all the spots had the mitochondrial percent < 25% and the 
hemoglobin percent < 20%.

Step 3. Acquisition of marker genes

DEG analysis SPADE algorithm

# of steps 3; high-uptake spots  
configuration → DEG acquisition 
→ correlation analysis

1; SPADE algorithm

Spot value The average of fluorescence  
intensities of spot-size patches

Principal components of  
features extracted from VGG16

Association Pearson correlation coefficient Empirical Bayes algorithm  
and linear regression analysis

p-value Wilcoxon rank sum test for uptake 
cluster DEGs; Linear regression 
analysis for uptake-associated  

genes

Empirical Bayes algorithm  
and linear regression analysis  

for SPADE genes

Step 4. Acquisition of uptake clusters

Combination of VGG16 and K means clustering

Mechanism Texture recognition

# of steps 3; high-uptake spots configuration → VGG16 & K means clustering 
(K = 4 for Sample A-1, A-2; K = 6 for Sample B) → acquisition of 

uptake-clusters
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determined with adjusted p-value < 10−5 in Wilcoxon rank-sum test from 
FindMarkers. Also, marker genes in each uptake cluster were determined 
similarly, except for adjusted p-value < 0.01 instead of adjusted  
p-value < 10−5. Afterward, each common set of genes in a specific cell 
type and a specific spatial region was acquired, and only enrichment was 
represented. Finally, all the common sets of genes were analyzed using 
hypergeometric cumulative distribution to figure out which cell type was 
significantly characteristic to which spatial region.

Other cell-type matching algorithms were addressed for verification. 
Robust cell type decomposition (RCTD) was used to determine the 
distribution of each cell type through supervised maximum likelihood 
estimation as a representative alternative method for MIA analysis.[22] 
All the parameters were set to the default settings including doublet_
mode of “doublet” in run.RCTD. Another algorithm, CellDART,[23] which 
used adversarial domain adaptation classification from single-cell data 
with prelabeled cell types was additionally performed to find cell types 
related to the distribution of fluorescence. When implementing RCTD 
and CellDART, the same scRNA-seq dataset with MIA analysis was 
used.

Genes Correlated with Fluorescence Intensity of Subclusters Defined 
by the Image: To acquire uptake-associated genes from uptake DEGs, 
Pearson correlation coefficient was calculated. The expression of 
the gene and the fluorescence intensity within each uptake cluster 
was correlated. To assess a statistical significance of the relationship 
between the fluorescence intensity and the gene expression, the slope 
of the regression curve was analyzed. Only genes with p value less than 
0.05 were sorted according to the correlation coefficient. The resultant 
uptake-associated genes were explored with gene ontology analysis. 
The uptake-associated genes were robustly calculated regardless of 
the criteria for obtaining fluorescence intensities (max, mean+2s.d., 
mean+1s.d., mean, median, min, etc.), so it was decided to calculate 
it by averaging pixels in spot-size patches without further justification. 
In sum, two-step approach was used, DEG identification at first and 
correlation analysis later, because unreliable genes easily came up, if 
only correlation analysis was performed.

Validation of the Uptake-Associated Markers with Immunofluorescence 
Experiment: To validate the first-ranked liposome uptake associated 
molecular marker from the analysis above, the primary anti-VDAC1 and 
anti-PECAM-1 antibodies were treated on the methanol fixed frozen 
tumor tissues from fluorescent liposome injected 4T1 tumor-bearing 
mice. Afterward, fluorescent secondary anti-IgG antibody was treated, 
and the IF images were acquired by confocal microscopy (STELLARIS 
5, Leica microsystems). The microscope scale was set to 100x and 400x 
for evaluating the overall and the local distribution of antibodies and 
liposomes. After obtaining IF images, Pearson correlation coefficient 
between an IF image of an antibody and a distribution of fluorescent 
liposomes was calculated.

Validation of the Uptake-Associated Markers with Another ST Datasets: 
To verify the molecular markers from the first ST data (Sample A-1), 
two more ST datasets were acquired, one of which was from the 
same tumor (Sample A-2) and the other of which was from another 
4T1 tumor-bearing mouse (Sample B). At first, spots with RNA reads 
less than 100 instead of 500 were excluded for the following analyses. 
Basic analyses including plotting RNA reads, spatial clustering, 
representation of DEGs of each cluster were performed. And then, 
CellDART analysis and subgroup fluorescence analysis followed. 
In subgroup fluorescence analysis, K was set as the minimum 
requirement for the division of the surface area from the inner area. 
In Sample A-2, K was set to 4; on the other hand, K was set to 6 in 
Sample B. To test the association between Sample A-1 and Sample A-2 
or between Sample A-1 and Sample B for each gene set term, Fisher’s 
exact test can be used to assess the association of identified gene sets 
between the different samples.[21,35]

Statistical Analysis: DEGs were explored by Wilcoxon rank sum test on 
FindMarkers in Seurat package. DEGs were validated by Fisher’s exact 
test between different datasets. p-values were adjusted by B&H method. 
GO was performed by enrichGO function and g:Profiler. Association 
between two variables was explored by Pearson correlation coefficient 

and regression analysis. Dimension reduction was conducted by PCA 
and t-distributed stochastic neighbor embedding (tSNE). Clustering 
was performed by K means clustering and unsupervised hierarchical 
clustering. Image features were extracted by VGG16 model merged 
with PCA assay. All the values were expressed by mean ± standard 
deviation (SD). All the adjusted p values less than 0.05 were considered 
significant. Statistical analysis and the image processing procedures 
were performed using R 4.0.2 and Python 3.7. All the packages and the 
pipelines followed the default parameters, and all the analyses were 
based on Sample A-1 unless otherwise specified.

Ethical Statement: The animal experiments performed for this study 
were approved by the Woojung Bio IACUC, the Republic of Korea. The 
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experiment ethics compliance.
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