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Osteosarcoma is the most common type of primary malignant bone
tumor. 18F-FDG PET/CT is useful for staging, detecting recurrence,
monitoring response to neoadjuvant chemotherapy, and predicting
prognosis. Here, we review the clinical aspects of osteosarcomaman-
agement and assess the role of 18F-FDG PET/CT, in particular with
regard to pediatric and young adult patients.
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Osteosarcoma is the most common type of primary malignant
bone tumor. 18F-FDG PET/CT is useful for staging, detecting recur-
rence, monitoring response to neoadjuvant chemotherapy (NCT),
and predicting prognosis. Here, we review the clinical aspects of
osteosarcoma management and assess the role of 18F-FDG PET/CT,
in particular with regard to pediatric and young adult patients.

DEMOGRAPHICS

Osteosarcoma is the most common type of malignant primary
bone tumor, with a peak incidence in 10- to 14-y-olds (1) and a sec-
ond peak incidence in those older than 50y. Approximately 4.4 cases
per million are diagnosed annually in people aged 0–24y (2). Pri-
mary osteosarcomas commonly arise within the metaphyses of long
bones, with 80% presenting within an extremity. Patients typically

present with pain that progresses over weeks to months, with local-
ized swelling and a diminished range of motion or function in the
affected limb (3). At the time of diagnosis, approximately 10%–20%
of patients have evidence of macroscopic metastasis, most com-
monly in the lung (81%), bone (34%), and, rarely, lymph nodes
(2%) (4). Five-year event-free survival rates are approximately
70% (5). 18F-FDG PET/CT has multiple roles in the evaluation of
osteosarcoma for staging, clinical and histologic response to therapy
during and at the conclusion of treatment, and determining prognosis
after completion of therapy (Fig. 1).

STAGING

18F-FDG PET/CT is useful for staging, detecting recurrence,
and predicting histologic response and prognosis in the investiga-
tion of osteosarcoma. Conventional imaging modalities other than
18F-FDG PET/CT for staging osteosarcoma are summarized in
Supplemental Figure 1 (supplemental materials are available at http://
jnm.snmjournals.org). During staging, PET/CT is useful for differ-
ential diagnosis of primary bone neoplasms and detecting meta-
static lesions (Figs. 2 and 3; images are scaled to SUV units as on
the color and intensity bars). Combining PET imaging with CT or
MRI provides more accurate information on the staging of osteo-
sarcoma than is possible with PET imaging alone (6,7). Also,
whole-body imaging with PET/CT can be helpful in staging be-
cause osteosarcoma favors the extremities and can be widely meta-
static (8). London et al. retrospectively compared the sensitivity
and specificity of PET/CT and plain radiography for detecting
malignant lesions, including primary and metastatic disease, in pa-
tients with pediatric primary bone tumors. PET/CT was more sensi-
tive than plain radiography (98% vs. 83%) and more specific (97%
vs. 78%) (9). Strobel et al. compared the diagnostic accuracy of plain
radiography, PET, and PET/CT. They found that PET/CT showed
95% sensitivity and 77% specificity, which were the highest rates
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among the imaging modalities (10). Quartuccio et al. reported that
PET/CT has higher accuracy for detecting bone metastasis than CT
or dedicated MRI and detects lung metastasis as well as CT does (11).
Franzius et al. found that PET performed better than bone scanning
for detecting bone metastasis (12), with Hurley et al. finding that
PET/CT was more sensitive but bone scanning was more speci-
fic (13). Used together in a lesion-based analysis (14), the sensitiv-
ity of PET/CT plus bone scanning was 100%, which is higher than
that of PET/CT or bone scanning alone, supporting the use of both
modalities together to detect bone metastasis (Table 1). This is be-
cause some osteoblastic metastases may not show elevated uptake
of 18F-FDG, thus yielding false-negative results on PET/CT but
positive results on bone scanning (14). In our experience, false-
negative cases are rare, and careful review of the CT bone window
in a PET/CT scan could reduce them. Thus, we do not routinely
perform bone scans on patients with osteosarcoma.
In a recent metaanalysis, the value of PET/CT in diagnosis and

staging was summarized (15). This metaanalysis evaluated 26 stud-
ies, including the above-mentioned studies. For detecting primary
lesions, PET/CT showed 100% sensitivity in 14 studies. Pooled sen-
sitivity and specificity for detecting lung metastases in 8 studies

were 81% (95% CI of 72%–88%) and 94%
(95% CI of 89%–97%), respectively. For
bone metastases, 6 studies showed a
pooled sensitivity of 93% (95% CI of
87%–97%) and a pooled specificity of
97% (95% CI of 96%–98%) (Supplemental
Fig. 2). Thus, PET/CT is useful for differ-
ential diagnosis of the suspected primary
bone lesions and for staging.

TREATMENT OVERVIEW

The therapeutic standard of care involves
NCT with 3 or more agents with single-
agent activity for approximately 8–10 wk,

followed by surgical resection of all detectable disease (including
metastases) and postoperative adjuvant chemotherapy for 12–29
wk (16). Limb-salvage surgery is the surgical treatment in
85%–90% of patients with osteosarcoma, providing better func-
tional and cosmetic results than amputation without compromising
survival (17).

PREDICTION OF RESPONSE TO NCT

Histologic Response
In 1994, a critical appraisal of osteosarcoma prognostic factors

concluded that the histologic response of primary tumors after
NCT is the most significant factor in predicting disease-free sur-
vival (3,18). Although histologic response is prognostic for out-
comes, dose-intensifying NCT to increase rates of tumor necrosis
have not yielded superior survival curves (19). Similarly, adding che-
motherapeutic agents for patients experiencing a poor response has
not improved their event-free survival or overall survival (OS) (19).
Several grading systems for assessing the effect of NCT on the pri-
mary tumor indicate that having at least 90% tumor necrosis after
NCT is a favorable response (Table 2) (20–22).

Role of 18F-FDG PET/CT
In osteosarcoma, the ability of PET or

PET/CT to predict histologic response dur-
ing or after NCT has been reported. In
1996, Jones et al. first reported using PET
to assess response to NCT in 3 patients
with osteosarcoma (23), finding that SUV
declined after NCT, which reflected the his-
tologic response. In the following studies,
tumor-to-background ratio or SUVmax after
NCT, as well as tumor-to-background
ratio or SUVmax ratio between PET at
baseline and after NCT, were found to pre-
dict histologic response (23–32). Mean-
while, some studies reported that PET/CT
was not predictive of histologic response
(Table 3; Supplemental Table 1) (33,34).
These studies agree on the following opti-
mal cutoffs of PET parameters: an SUVmax

of 2–3 after NCT and a tumor-to-
background ratio or SUVmax ratio of
0.4–0.6 (24–29,31–33,35–38). In a metaana-
lysis, an SUVmax after NCT of less than 2.5
and an SUVmax ratio of less than 0.5

FIGURE 1. Role of 18F-FDG PET/CT in staging and outcome prediction in osteosarcoma. CTx 5

chemotherapy; PFS5 progression-free survival.

FIGURE 2. A 13-y-old boy with right leg pain. (A) 18F-FDG PET CT shows 1-cm nodule with mark-
edly elevated uptake in right lower lobe (SUVmax, 6.7) (

18F-FDG PET emission image [top], CT trans-
mission image [middle], and PET/CT image [bottom]). (B) Hypointense signal on coronal T1 MR
image shows tumor extending from tibial metaphysis through proximal third of right tibia (arrows).
(C) Coronal T2 short-tau inversion recovery MR image shows intermediate signal within intramedul-
lary component of tumor (white arrows), corresponding to hypointense T1 signal, and hyperintensity
in soft-tissue component lateral to tibia (yellow arrows). (D) 18F-FDG PET/CT anterior maximum-
intensity-projection view shows intense uptake in the proximal aspect of the right distal lower
extremity. (E) 18F-FDG PET axial emission image (top), transmission CT bone window (middle), and
PET/CT image (bottom) show intense though irregularly increased uptake of 18F-FDG in both bone
and soft-tissue components of tumor (SUVmax, 15.

TM).
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between baseline and after NCT were suggested as optimal cutoffs
(39). Because of the ability of PET/CT to predict the histologic
response, Harrison et al. have proposed further evaluating PET/CT
as an imaging biomarker to screen the potential of targeted agents
in osteosarcoma (40).
Predicting the histologic response of tumor during NCT may be

a better option than doing so after completion of NCT in the clinic
because the latter is too late to modify the NCT regimen. In 2012,
Im et al. found that SUVmax after 1 cycle of NCT can also predict
the histologic response with an accuracy of 92.9% using a cutoff
of 3.2 (37). This result was reproduced by Byun et al. in 2014 (41)
and Davis et al. in 2018 (38). Metabolic–volumetric parameters of
PET, such as metabolic tumor volume (MTV) and total lesion gly-
colysis (TLG, the product of tumor segmented SUVmean and
MTV), during and after the NCT also showed predictive value for
histologic response (36,37,41). Byun et al. reported that SUVmax,
MTV, and TLG after 1 cycle of NCT could predict histologic
response, but tumor volume assessed by MRI could not (41).
Among PET parameters, SUVmax could be a better choice than
metabolic–volumetric parameters because MTV and TLG mea-
surements depend on the PET tumor segmentation methods, which
are not standardized (42). Also, SUVmax during NCT performed
similarly to MTV and TLG in predicting the histologic response
(area under the curve, 0.956 for all parameters) (37). Because the
level of water molecule diffusion can be changed according to the
cellularity of the primary lesion, diffusion-weighted MRI can be
used to predict the histologic response of osteosarcoma; thus, com-
bining PET and diffusion-weighted MRI may be an effective method
to predict the histologic response (35).
Furthermore, predicting tumor histologic response using the base-

line PET/CT has been attempted. Byun et al. used dual-phase (i.e.,
dual-time point) baseline PET/CT obtained at 60 and 120min after
18F-FDG injection (43), finding that the mean retention index at

baseline PET/CT was predictive of histo-
logic response, with a moderate accuracy of
71% (Supplemental Fig. 3). However, Im
et al. reported that although conventional
parameters of baseline PET/CT could not
predict histologic response, kurtosis and
skewness among histogram-based para-
meters could, with areas under the curve of
0.718 and 0.714, respectively. The predic-
tive value could be enhanced using a
machine learning algorithm (area under the
curve, 0.821), but the predictive values of
texture features depended on the type of
segmentation method and machine learning
algorithm (44). Altogether, more evidence
is needed to prove that baseline PET/CT is
predictive of histologic response after NCT.

PREDICTION OF OUTCOMES

Prognostic Factors
Tumor site, size, primary metastases, re-

sponse to chemotherapy, and surgical remis-
sion are the reported independent prognostic
factors in osteosarcoma (3). Osteosarcoma
arising in pelvic or axial bones has a worse
prognosis than that of disease in extremity
bones, with pelvic osteosarcoma having

reported 5-y OS rates of 27%–47% (45). Osteosarcoma arising in
the spine has an even worse prognosis, with a median survival time
of 10–23mo (46). Tumor stage is also prognostic. In the Musculo-
skeletal Tumor Society’s Enneking system, stage IA showed an
almost 100% 5-y survival rate, yet IIB showed a 5-y survival rate
of only 40% (47). Among patients with metastases, those with only
lung metastases have a more favorable prognosis than do those
with extrapulmonary lesions (5-y OS rate, 38% vs. 10.9%) (3). The
presence of skip metastasis is associated with a poor prognosis (48).
Being younger than 40 y is a good prognostic factor (5-y survival
rate, 65.1% vs. 55.0%) (3). In the literature, the most reliable cutoff
differentiating favorable from unfavorable response to chemotherapy
is 90% necrosis, with greater than 90% necrosis considered favor-
able (31). Prognostic factors can be applied differently according to
age. Response to chemotherapy is applied as a prognostic factor in
pediatric patients but not in adult patients (49). Meanwhile, patho-
logic fracture was associated with poor prognosis in adult patients
but not in pediatric patients (50).

Role of 18F-FDG PET/CT
Evaluations of the prognostic value of PET/CT parameters are

summarized in Table 4. In 2009, Costelloe et al. was the first to
report that SUVmax and TLG, both at baseline and after NCT,
could predict progression-free survival and OS (51). Hawkins et al.
reported that an SUVmax of over 2.5 after NCT is associated with
worse progression-free survival (33). Byun et al. also reported that
baseline MTV and TLG could predict metastasis-free survival (52).
However, Bailly et al.’s tests of multiple baseline PET/CT para-
meters for predicting prognosis indicated that only the elonga-
tion feature, a type of shape feature, was significantly associated
with progression-free survival and OS (53). The elongation feature
is the ratio of the longer and shorter edges of the smallest rectangle
that encloses the measured region. An elongation factor of 1 indi-
cates maximum symmetry. Most PET/CT parameters were not

FIGURE 3. A 10-y-old girl with pain in right lower extremity. (A) Anterior maximum-intensity-
projection PET image shows primary tumor in proximal right tibia and soft tissue (top arrow; SUVmax,
24.4), unsuspected site of metastatic disease in distal right tibia (middle arrow; SUVmax, 12.9), and
unsuspected site of metastatic disease in fourth right metatarsal (bottom arrow; SUVmax, 8.2). (B–D)
PET (top), CT (middle), and PET/CT fusion (bottom) images showing the sites indicated in A by top
arrow (B), middle arrow (C), and bottom arrow (D). Uptake in ipsilateral popliteal, inguinal femoral,
and iliac lymph nodes was considered reactive.

ROLE OF
18F-FDG PET/CT IN OSTEOSARCOMA � Oh et al. 3



TABLE 1
Staging and Diagnosis using 18F-FDG PET/CT vs. Other Imaging Modalities

Age (y)

Objective Study design
Patients

(n) Median Mean Procedure Category Sensitivity Specificity Accuracy Reference

Differential diagnosis
of primary lesion

Prospective 50 NR 36.9 Conventional
radiograph

85% 65% 78% (10)

PET 85% 35% 68%

PET/CT 91% 77% 86%

Detection of lung
metastasis

Retrospective 20 NR 13.1 PET/CT 84% 79% 95% (11)

CT 94% 71% 67%

Detection of bone
metastases

Retrospective 70 14 NR PET Patient 90% 96% 95% (12)

Lesion 72% NR NR

BS Patient 71% 92% 88%

Lesion 72% NR NR

Detection of bone
metastases

Retrospective 206 15 NR PET/CT Patient 94.5% 98.1% 98% (14)

Lesion 92.1% NR NR

BS Patient 76.3% 97.0% 97%

Lesion 74.2% NR NR

PET/CT 1 BS Patient 100% 96.3% 97%

Lesion 100% NR NR

Detection of bone
metastases

Retrospective 39 12 NR PET/CT 95% 98% 98% (13)

BS 76% 97% 96%

PET/CT 1 BS 100% 96% 97%

NR 5 not reported; PET 5 18F-FDG PET; BS 5 bone scan.

TABLE 2
Histologic Response Grading Systems

System Grade Description

Rosen et al. (20)

IV No viable tumor cells

III .90% tumor necrosis

II 50% # 90% tumor necrosis

I 0% , 50% tumor necrosis

Picci et al. (21)

Total response No viable tumor

Good response 90%�99% necrosis

Fair response 60%�89% necrosis

Poor response ,60% necrosis

Salzer-Kuntschik et al. (22)

I No viable tumor cell

II Single tumor cell or 1 vital cell cluster , 0.5 cm

III Vital tumor , 10%

IV Vital tumor 10%–50%

V Vital tumor . 50%

VI No effect of chemotherapy

4 THE JOURNAL OF NUCLEAR MEDICINE � Vol. 00 � No. � XXXX 2023



T
A
B
LE

3
P
re
di
ct
in
g
H
is
to
lo
gi
c
R
es

p
on

se
U
si
ng

1
8
F-
FD

G
P
E
T/
C
T

S
tu
d
y
d
es

ig
n

P
at
ie
nt
s

(n
)

M
ed

ia
n

ag
e
(y
)

P
E
T
p
ar
am

et
er

Ti
m
e
p
oi
nt

H
is
to
lo
gi
c

as
se

ss
m
en

t
H
is
to
lo
gi
c

re
sp

on
d
er

cr
ite

ria
C
ut
of
f
fo
r
hi
st
ol
og

ic
re
sp

on
d
er

H
is
to
lo
gi
c

re
sp

on
se

p
re
d
ic
te
d
?

R
ef
er
en

ce

P
ro
sp

ec
tiv

e
15

17
S
U
V
m
a
x,
S
U
V
m
a
x
ra
tio

,
TB

R
,
TB

R
ra
tio

B
as

el
in
e,

af
te
r
N
C
T

S
al
ze

r-
K
un

ts
ch

ik
G
ra
d
e
I–
III

(.
90

%
ne

cr
os

is
)

TB
R

ra
tio

.
0.
46

Y
es

(3
2)

P
ro
sp

ec
tiv

e
70

14
S
U
V
m
a
x,
S
U
V
m
a
x
ra
tio

B
as

el
in
e,

af
te
r
N
C
T

R
os

en
G
ra
d
e
III
–
IV

(.
90

%
ne

cr
os

is
)

S
U
V
m
a
x
(a
ft
er

N
C
T)

#
2,

S
U
V
m
a
x
ra
tio

$
0.
6

Y
es

(2
5)

R
et
ro
sp

ec
tiv

e
40

15
.1

S
U
V
m
a
x,
S
U
V
m
a
x
ra
tio

B
as

el
in
e,

af
te
r
N
C
T

S
al
ze

r-
K
un

ts
ch

ik
G
ra
d
e
I–
III

(.
90

%
ne

cr
os

is
)

S
U
V
m
a
x
(a
ft
er

N
C
T)

,
2.
5,

S
U
V
m
a
x
ra
tio

,
0.
5

N
o

(3
3)

R
et
ro
sp

ec
tiv

e
19

24
.1

S
U
V
m
a
x,
S
U
V
m
a
x
ra
tio

,
S
U
V
m
e
a
n
,
S
U
V
m
e
a
n

ra
tio

,
M
TV

,
M
TV

ra
tio

D
ur
in
g
N
C
T,

af
te
r

N
C
T

%
ne

cr
os

is
.
90

%
ne

cr
os

is
S
U
V
m
a
x
(a
ft
er

N
C
T)

,
2.
5,

M
TV

ra
tio

,
0.
5

Y
es

(3
6)

P
ro
sp

ec
tiv

e
9

23
S
U
V
p
e
a
k,
S
U
V
m
e
a
n

B
as

el
in
e,

d
ur
in
g

N
C
T,

af
te
r
N
C
T

%
ne

cr
os

is
N
R

N
R

Y
es

(2
3)

P
ro
sp

ec
tiv

e
27

17
TB

R
,
TB

R
ra
tio

B
as

el
in
e,

af
te
r
N
C
T

S
al
ze

r-
K
un

ts
ch

ik
G
ra
d
e
I–
III

(.
90

%
ne

cr
os

is
)

TB
R

ra
tio

.
0.
6

Y
es

(3
1)

R
et
ro
sp

ec
tiv

e
16

N
R

V
is
ua

la
ss

es
sm

en
t,

TB
R
,
TB

R
%

ch
an

ge

B
as

el
in
e,

af
te
r
N
C
T

%
ne

cr
os

is
.
90

%
ne

cr
os

is
TB

R
(a
ft
er

N
C
T)

,
1.
4

Y
es

(3
0)

P
ro
sp

ec
tiv

e
10

18
S
U
V
m
e
a
n
,
S
U
V
m
e
a
n
%

ch
an

ge
B
as

el
in
e,

af
te
r
N
C
T

S
al
ze

r-
K
un

ts
ch

ik
G
ra
d
e
I–
III

(.
90

%
ne

cr
os

is
)

N
R

N
o

(3
4)

R
et
ro
sp

ec
tiv

e
11

17
S
U
V
m
a
x,
S
U
V
m
a
x
ra
tio

B
as

el
in
e,

af
te
r
N
C
T

E
ur
op

ea
n

O
st
eo

sa
rc
om

a
In
te
rg
ro
up

tr
ia
ls

.
90

%
ne

cr
os

is
S
U
V
m
a
x
(a
ft
er

N
C
T)

,
2.
5,

S
U
V
m
a
x
ra
tio

.
0.
5

Y
es

(2
7)

P
ro
sp

ec
tiv

e
20

15
S
U
V
m
a
x,
S
U
V
m
a
x
ra
tio

,
M
TV

,
M
TV

ra
tio

,
TL

G
,
TL

G
ra
tio

B
as

el
in
e,

d
ur
in
g

N
C
T,

af
te
r
N
C
T

S
al
ze

r-
K
un

ts
ch

ik
G
ra
d
e
I–
III

(.
90

%
ne

cr
os

is
)

S
U
V
m
a
x
(a
ft
er

N
C
T)

,
3,

S
U
V
m
a
x
(d
ur
in
g
N
C
T)

,
3.
2,

S
U
V
m
a
x
ra
tio

(b
as

el
in
e/
d
ur
in
g)

,
0.
49

,
S
U
V
m
a
x
ra
tio

(b
as

el
in
e/
af
te
r)
,

0.
56

Y
es

(3
7)

P
ro
sp

ec
tiv

e
27

15
S
U
V
m
a
x,
M
R
V
,

ap
p
ar
en

t
d
iff
us

io
n

co
ef
fi
ci
en

t

B
as

el
in
e,

af
te
r
N
C
T

R
os

en
G
ra
d
e
III
–
IV

(.
90

%
ne

cr
os

is
)

S
U
V
m
a
x
%

ch
an

ge
$

52
%

,
ap

p
ar
en

t
d
iff
us

io
n
co

ef
fi
ci
en

t
%

ch
an

ge
.

13
%

Y
es

(3
5)

P
ro
sp

ec
tiv

e
31

15
R
I m

a
x,
R
I m

e
a
n

B
as

el
in
e,

af
te
r
N
C
T

R
os

en
G
ra
d
e
III
–
IV

(.
90

%
ne

cr
os

is
)

R
I m

e
a
n
(b
ef
or
e
N
C
T)

,
10

%
Y
es

(4
3)

TB
R
5

tu
m
or

to
b
ac

kg
ro
un

d
ra
tio

;N
R
5

no
t
re
p
or
te
d
;R

I m
a
x
5

m
ax

im
um

re
te
nt
io
n
in
d
ex

;R
I m

e
a
n
5

m
ea

n
re
te
nt
io
n
in
d
ex

.

ROLE OF
18F-FDG PET/CT IN OSTEOSARCOMA � Oh et al. 5



T
A
B
LE

4
P
re
di
ct
in
g
P
ro
gn

os
is

V
ia

1
8
F-
FD

G
P
E
T/
C
T

S
tu
d
y
d
es

ig
n

P
at
ie
nt
s

(n
)

M
ed

ia
n

ag
e
(y
)

Ti
m
e
p
oi
nt
s

P
ar
am

et
er
s

C
lin

ic
al

ou
tc
om

e
C
ut
of
f
fo
r
w
or
se

p
ro
gn

os
is

H
az

ar
d
ra
tio

95
%

C
I

P
R
ef
er
en

ce

R
et
ro
sp

ec
tiv

e
st
ud

y
31

27
.5

B
as

el
in
e,

af
te
r

N
C
T

S
U
V
m
a
x,
TL

G
P
FS

S
U
V
m
a
x
(b
as

el
in
e)

.
15

4.
51

4
1.
33

5–
15

.2
6

0.
01

5
(5
1)

S
U
V
m
a
x
(a
ft
er

N
C
T)

.
5

4.
52

7
1.
54

8–
13

.2
4

0.
00

6

TL
G

%
ch

an
ge

(1
0%

)
1.
09

6
1.
01

7–
1.
18

1
0.
01

6

O
S

S
U
V
m
a
x
(a
ft
er

N
C
T)

.
3.
3

N
R

0.
04

3

TL
G

(b
as

el
in
e,

p
er

un
it)

1.
00

3
1.
00

0–
1.
00

5
0.
02

1

R
et
ro
sp

ec
tiv

e
re
vi
ew

40
15

.1
B
as

el
in
e,

af
te
r

N
C
T

S
U
V
m
a
x

P
FS

S
U
V
m
a
x
(a
ft
er

N
C
T)

.
2.
5

N
R

0.
02

1
(3
3)

R
et
ro
sp

ec
tiv

e
st
ud

y
83

16
B
as

el
in
e,

af
te
r

N
C
T

S
U
V
m
a
x,
M
R
V
,

M
TV

,
TL

G
M
et
as

ta
si
s-
fr
ee

su
rv
iv
al

B
as

el
in
e
M
TV

(2
.0
)
.

10
5

3.
8

1.
5–

9.
59

0.
00

2
(5
2)

B
as

el
in
e
TL

G
(4
5%

)
.

18
7

2.
47

1.
05

6–
5.
79

0.
03

7

R
et
ro
sp

ec
tiv

e
st
ud

y
31

13
.9

B
as

el
in
e,

af
te
r

N
C
T

S
U
V
m
a
x,
S
U
V
p
e
a
k,

S
U
V
m
e
a
n
,
M
TV

,
TL

G
,
te
xt
ur
al

fe
at
ur
es

,
sh

ap
e

fe
at
ur
es

P
FS

E
lo
ng

at
io
n
(b
as

el
in
e)

(c
ut
of
f
N
R
)

5.
58

3
N
R

0.
01

9
(5
3)

O
S

E
lo
ng

at
io
n
(b
as

el
in
e)

(c
ut
of
f
N
R
)

7.
11

3
N
R

0.
00

62

R
et
ro
sp

ec
tiv

e
re
vi
ew

34
12

.2
B
as

el
in
e,

d
ur
in
g
N
C
T,

af
te
r
N
C
T

S
U
V
m
a
x,
S
U
V
p
e
a
k,

M
TV

,
TL

G
E
ve

nt
-f
re
e

su
rv
iv
al

M
TV

(2
.5
)
(b
as

el
in
e)

.
23

8.
06

5.
02

4*
1.
51

–
16

.7
7

0.
01

*
(5
4)

TL
G

(2
.5
)
(b
as

el
in
e)

.
98

1.
97

5.
74

0*
1.
34

–
24

.5
1

0.
00

6*

M
TV

(2
.5
)
(d
ur
in
g
N
C
T)

.
35

.8
8.
15

5*
1.
52

–
43

.6
9

0.
04

6*

O
S

M
TV

(2
.5
)
(b
as

el
in
e)

.
23

8.
06

29
.4
47

*
2.
21

–
39

2.
27

0.
03

3*

TL
G

(2
.5
)
(b
as

el
in
e)

.
1,
02

2.
3

29
.4
47

*
2.
21

–
39

2.
27

0.
03

3*

TL
G

(2
.5
)
(d
ur
in
g
N
C
T)

.
12

0.
4

34
.7
89

*
2.
50

–
48

3.
84

0.
03

3*

R
et
ro
sp

ec
tiv

e
re
vi
ew

5
re
tr
os

p
ec

tiv
e
re
vi
ew

of
p
ro
sp

ec
tiv

e
st
ud

y;
P
FS

5
p
ro
gr
es

si
on

-f
re
e
su

rv
iv
al
;N

R
5

no
t
re
p
or
te
d
.

*A
d
ju
st
ed

fo
r
hi
st
ol
og

ic
re
sp

on
se

.
N
um

b
er
s
in

p
ar
en

th
es

es
in
d
ic
at
e
se

gm
en

ta
tio

n
m
et
ho

d
s
to

m
ea

su
re

M
TV

an
d
TL

G
,w

ith
(2
.0
)i
nd

ic
at
in
g
fi
xe

d
ab

so
lu
te

th
re
sh

ol
d
of

S
U
V
2.
0,

(2
.5
)i
nd

ic
at
in
g
fi
xe

d
ab

so
lu
te

th
re
sh

ol
d
of

S
U
V
2.
5,

an
d
(4
5%

)i
nd

ic
at
in
g
fi
xe

d
re
la
tiv

e
th
re
sh

ol
d
of

45
%

of
S
U
V
m
a
x
.

6 THE JOURNAL OF NUCLEAR MEDICINE � Vol. 00 � No. � XXXX 2023



prognostic in the study, and the parameters were used as continuous
variables only. However, the previous studies found that the dichoto-
mized PET/CT parameters are prognostic (53). We reported that
most of the dichotomized PET/CT parameters, including SUVmax,
SUVpeak, MTV, and TLG at baseline, during, and after NCT, are
predictive of event-free survival and OS (Supplemental Fig. 4).
Furthermore, we found that the parameters were predictive of
event-free survival and OS even after adjustment for the histologic
response and initial staging (54).
The studies showed similar results via diverse methods. For

example, the segmentation methods of MTV and TLG vary widely.
Costelloe et al. set a relative SUV threshold of 45% (51), but Byun
et al. used fixed SUV thresholds of 2%, 2.5%, and 45% (52). Im
et al. used the fixed SUV thresholds of 2% and 2.5%, relative SUV
thresholds of 40% and 60%, and liver-based thresholds, reporting
that fixed thresholds or liver-based thresholds were more robust
than relative thresholds in predicting prognosis. The MTV and
TLG based on relative thresholds were not prognostic during or after
NCT because the tumor volumes tend to be overestimated (54). Also,
the cutoffs of parameters for predicting prognosis differed: Hawkins
et al. used the an SUVmax cutoff of 2.5 (33); the other studies used the
optimized cutoffs (51,52,54). All studies were retrospective in some

way, necessitating larger, prospective studies
to confirm these results and to define the
optimal cutoff for predicting prognosis in
osteosarcoma.

RECURRENT DISEASE

PET/CT can detect osteosarcoma recur-
rence after completion of treatment (Fig. 4;
Supplemental Fig. 5). A metaanalysis of the
detection of recurrent disease in 7 studies
revealed excellent diagnostic performance,
with pooled sensitivity and specificity rates
of 91% (95% CI, 81% to 96%) and 93%
(95% CI, 87% to 97%), respectively (15).
Angelini et al. assessed the diagnostic accu-
racy of PET/CT for detecting recurrence
in 37 patients who were treated with ade-
quate surgical resection, were suspected to
have relapsed disease, and had histologic
validation of disease relapse after PET/CT.
Altogether, 33 patients (89.2%) had PET/

CT-detected recurrence. The sensitivity, specificity, and accuracy
were 91%, 75%, and 89%, respectively (55). Likewise, Sharp et al.
reported that PET/CT was positive in 10 local recurrences,
observing either a solid or a peripheral/nodular pattern with a
wide range of SUVmax (3.0–15.7) (56). Osteosarcoma has the
potential to metastasize to various organs; examples of such metas-
tases include cerebral (Fig. 5), pulmonary pleural caking (Supple-
mental Fig. 6), epimyocardial (Supplemental Fig. 7), renal (Fig. 6),
pancreatic (Supplemental Fig. 8), and tumor thrombosis (Supple-
mental Fig. 9).

PET/MRI

Generally, PET/MRI has advantages over PET/CT for its excel-
lent soft-tissue contrast and lower radiation exposure, which is a
clear benefit for pediatric patients (57,58). Sch€afer reported that
PET/MRI showed a 73% reduction in radiation exposure com-
pared with PET/CT and demonstrated an identical rate of detecting
lesions (59). Platzek et al. reported that TNM staging of PET/MRI
was almost identical to that of conventional modalities (CT plus
MRI) in 29 patients with sarcoma (60). Also, Eiber et al. compared
the ability of PET/MRI and PET/CT to detect bone metastasis in
patients with various primary malignancies. They reported that PET

with T1-weighted turbo spin echo MRI did
not provide a significant difference in detec-
tion of malignant bone lesions but was supe-
rior to PET/CT in the anatomic delineation of
18F-FDG-positive lesions (61). Buchbender
et al. suggested in their continuing education
paper that PET/MRI could provide similar
diagnostic accuracy for T staging with MRI
alone and similar performance for N staging
with PET/CT. (62). Orsatti et al. found that
in 13 pediatric sarcoma patients, there was
a significant negative correlation between
apparent diffusion coefficients and SUV in
primary lesions as measured using PET/
MRI (63). In response monitoring, whole-
body diffusion-weighted MRI during
induction chemotherapy could predict

FIGURE 4. A 15-y-old boy with history of osteosarcoma in left femur and limb-sparing proce-
dure on left lower extremity. (A) Topogram from attenuation-correction CT shows rotating-hinge
modular prosthesis in left distal femur and left knee. (B) Anterior maximum-intensity projections
shows multiple areas of markedly elevated uptake in left lower extremity. (C) PET/CT sagittal
view of left leg shows numerous soft-tissue nodules with intense uptake posterior to prosthesis
(SUVmax, 20.3).

FIGURE 5. A 23-y-old man with progressive metastatic osteosarcoma: attenuation-correction CT
image (A), PET emission image (B), PET/CT image (C), and axial T1 MR image (D). 18F-FDG PET/CT
shows previously unknown left temporal lobe metastasis (arrows) (SUVmax, 6.4). There is uptake at
periphery of lesion, with reduced uptake centrally, consistent with necrosis. Contrast-enhanced T1
MR image obtained following day shows irregularly rimmed ring enhancing lesion in left temporal
lobe, consistent with metastatic disease.
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clinical response well (area under the curve, 0.98) and exhibited
significant agreement with PET/MRI in 56 patients with sarcoma
or lymphoma. The biologic and clinical significance of discordant
response assessment between diffusion-weighted MRI and PET/MRI
in 8 of the 56 patients has not been assessed (64). Therefore, it is
warranted to evaluate the additive value by combination of
PET/MRI with diffusion-weighted MRI in response monitoring. In
addition, Baratto et al. described that PET/MRI can improve moni-
toring of response to immunotherapy and potentially be used for
identification of nonresponders by tumor-associated macrophage
imaging using iron oxide nanoparticles (65).

NEW TRACERS

18F-NaF is an excellent bone-seeking agent; therefore, NaF PET
has been used for skeletal imaging for many decades (66). Patho-
logic bone changes and soft-tissue metastasis with dystrophic cal-
cification can be detected by NaF PET (67). Cai et al. reported
that NaF PET images could detect hepatic metastasis in patients
with osteosarcoma. 18F-NaF activity was more prominent in the
calcified lateral portion (68). Chou et al. reported that 18F-NaF
could detect cardiac osteosarcoma metastasis, which is a rare met-
astatic site in patients with osteosarcoma (67). Also, Verma et al.
reported that NaF PET could detect a tumor thrombus arising from
osteosarcoma (69). Recently, Kairemo et al. proposed NaF PET-
based response criteria: NaF PET response criteria for solid tumors
(NAFCIST). In the study, the treatment response of 17 patients
with metastatic osteosarcoma who were treated with 223RaCl2 was
assessed using conventional PERCIST based on 18F-FDG PET/CT
and NAFCIST based on NaF PET. NAFCIST could predict the
OS but PERCIST could not (70). Altogether, NaF PET is excellent
for finding specific tumor regions, including rare metastasis, and
could be a good prognostic biomarker.
Radiolabeled fibroblast activation protein inhibitors (FAPIs)

have attracted increasing attention as new theranostic agents that
specifically target cancer-associated fibroblast (71–73). Kratochwil
et al. retrospectively evaluated 68Ga-FAPI PET uptake in 80 patients
with 28 different types of malignancies, including 8 patients with
sarcoma. The SUVmean of the sarcoma group was the second highest
among 28 types of malignancies (71). Koerber et al. retrospectively
evaluated the diagnostic ability of 68Ga-FAPI PET in 15 patients
with sarcoma, including 1 with osteosarcoma. 68Ga-FAPI PET
showed high potential as a probe for diagnosis in sarcoma because
it showed high uptake in the primary tumor (median, 7.16; range,
4.64–9.79) (72). Kessler et al. compared the accuracy of 68Ga-
FAPI PET with that of 18F-FDG PET in 47 patients with sarcoma,
including 8 patients with osteosarcoma. They found a significant
association between FAP expression and 68Ga-FAPI PET uptake
through histopathologic verification (Spearman r 5 0.43,

P 5 0.03). In per-patient basis analysis, the
detection rate of 68Ga-FAPI and 18F-FDG
PET were 76.6% and 81.4%, respectively.
However, 68Ga-FAPI PET could detect
more metastatic lesions, resulting in an
upstaging compared with 18F-FDG PET in
8 (18.6%) patients (73). On the basis of the
promising results in these early imaging
studies of FAPI PET in patients with sar-
coma, further studies are warranted to com-
pare the performance of FAPI PET in
various clinical situations, such as staging,

treatment monitoring, and recurrence, with that of current standard
imaging modalities, including 18F-FDG PET. Furthermore, a thera-
nostic approach using FAPI could open new avenues for osteosar-
coma management (74).
The membrane glycolipid GD2 is overexpressed in osteosar-

coma; however, anti-GD2 immunotherapy for recurrent osteosar-
coma has been limited because of the intertumoral heterogeneity
of GD2 expression in osteosarcoma. Therefore, immuno-PET
agents to assess GD2 expression have been developed and have
shown promising results in a preclinical PET/CT study (75) and a
PET/MRI case report of an osteosarcoma patient with lung metas-
tasis (76).

CONCLUSION

In osteosarcoma, 18F-FDG PET/CT is useful for staging, moni-
toring response to therapy, predicting prognosis, and characteriz-
ing recurrent disease. It has been extensively validated in studies
involving pediatric patients, and similar findings have also been
observed in research that includes adult patients, highlighting its
effectiveness across different age groups. 18F-FDG PET/CT could
ease the drug development process for newer osteosarcoma thera-
pies by facilitating patient selection based on prognosis and serv-
ing as early determinants of disease response.
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