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Abstract 

Recently, cell therapy has emerged as a promising treatment option for various disorders. 

Given the intricate mechanisms of action (MOA) and heterogenous distribution in target 

tissues inherent to cell therapy, it is necessary to develop more sophisticated, unbiased 

approaches to evaluate the distribution of administered cells and the molecular changes at a 

microscopic level. In this study, we present a label-free approach for assessing the tissue 

distribution of administered human mesenchymal stem cells (hMSCs) and their MOA, 

leveraging spatially resolved transcriptomics (ST) analysis. We administered hMSCs to 

mouse model of lung fibrosis and utilized ST to visualize the spatial distribution of hMSCs 

within the tissue. This was achieved by capitalizing on interspecies transcript differences 

between human and mouse. Furthermore, we could examine molecular changes associated 

with the spatial distribution of hMSCs. We suggest that our method has the potential to serve 

as an effective tool for various cell-based therapeutic agents. 

 

Keywords: cell therapy, spatially resolved transcriptomics (ST), spatial distribution, 

mechanisms of action (MOA) 
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Introduction  

Cell therapy involves the introduction of therapeutic cells into patients and has 

gained significant attention as a promising treatment option for a range of diseases. It has 

garnered significant attention in recent years as a promising treatment modality for various 

diseases, including cancers [1], autoimmune diseases [2], inflammatory diseases [3], and 

neurodegenerative diseases [4]. Cell therapeutic agents are characterized by designability, 

biocompatibility, and applicability of cell functions even surpassing blood-brain barrier (BBB) 

[5], making cell therapy more promising. With the advent of advanced techniques in cellular 

manipulation (e.g., chimeric antigen receptor-T cell or NK cell therapy (CAR-T/NK), stem 

cells, tumor infiltrating lymphocytes, or microbiome agents), the potential of cell therapy as a 

game-changing therapeutic approach continues to grow. Despite the promise of cell therapy, 

it has faced significant challenges due to the living nature of cells, resulting in limitations in 

reproducibility of drug efficacy and difficulties in preparation, delivery, and administration [6]. 

Traditional methods assessing the efficacy of cell therapy often lack the necessary 

resolution and accuracy to provide meaningful insights into the complex interactions and 

molecular changes that occur during treatment. For example, poly-chain reaction (PCR) is 

basically performed in organ resolution, limiting the identification of the microscopic 

properties of cell therapy, particularly in-tissue distribution of administered cells [7]. 

Fluorescence-labeled cells, which are commonly used to obtain images of administered cells, 

have a drawback in that the tracers can easily detach from the cells, resulting in limitation for 

tracking cells [8]. Most of all, it is important to note that these methods do not provide a 

comprehensive understanding of the detailed molecular changes and interactions that occur 

between the administered cells and the host cells within the target tissues. These have led to 

a pressing need for innovative and comprehensive approaches to better understand the true 

potential of cell therapeutic agents. 

Spatially resolved transcriptomics (ST) has emerged as a groundbreaking tool in the 

field of molecular biology [9]. By combining spatial information with gene expression data, 
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this technique allows researchers to study the dynamic changes in gene expression patterns 

within tissues and cells at an unprecedented level of detail. ST has the potential to 

revolutionize the evaluation of cell therapeutic agents by providing a more comprehensive 

understanding of their effects on the cellular and molecular level. 

In this paper, we present a novel experimental and analytic procedure that 

harnesses the power of ST to evaluate cell therapeutic agents. This approach not only offers 

a more in-depth understanding of the mechanisms underlying the therapeutic effects of 

these agents, but also provides critical insights into the optimization of cell therapy 

treatments for various diseases. Here, we administered human mesenchymal stem cells 

(hMSC) in a mouse model of lung fibrosis and presented a method for evaluating both the 

tissue-level distribution of the administered stem cells and their effect on treated tissue. We 

expect this analysis method to facilitate the development of cell therapeutics by 

comprehensively understanding mode of action and in-depth cell-level distribution in the 

microenvironment.  
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Results 

Detection of human transcripts for label-free evaluation of stem cell distribution 

The overall research design and ST library preparation for lung tissues from normal 

mouse (‘Nor’), lung fibrosis model (‘Con’), and lung fibrosis model treated with hMSC cells 

(‘Exp’) were represented in Figure 1a. Lung fibrosis was induced by intravenous injection of 

bleomycin for 3 weeks. Lung fibrosis was visually identified on histopathologic images of 

lungs (Supplementary Figure 1). Normal bone marrow derived hMSC was intravenously 

injected in the ‘Exp’ mouse 6 h after sacrifice. The cDNA library of spatially resolved 

transcriptomics (ST) was mapped using a reference genome that combined both human and 

mouse genomes to detect human transcripts from the administered cells.  

With constant sequencing depth, the number of raw counts of a gene in a single 

spot is inversely proportional to the total RNA production for that spot. To address this, gene 

counts are adjusted using various methods, such as the trimmed mean of M-values (TMM) 

[10] and fractile normalization. Also, since genes with large counts can overestimate their 

activities, gene counts are generally log-transformed. This process, referred to as 

normalization, can be performed using scanpy.pp.normalize_total and scanpy.pp.log1p 

functions in Python. Following the normalization of gene counts, the distribution of all the 

transcripts became more closely aligned with normal distribution (Supplementary Figure 2, 

the first column). The percentage of the human transcripts of all the transcripts for a single 

spot, %human, was also explored according to sample and normalization. As a 

result, %human with normalization was higher in the ‘Exp’ sample compared to without 

normalization (Supplementary Figure 2, the right bottom), while having minimal impact on 

the ‘Nor’ and ‘Con’ samples. Hence, we focused on human transcripts and %human with 

normalization for the subsequent analysis. We tested various thresholds to discriminate 

falsely detected human transcripts (Supplementary Figure 3). Consequently, we defined a 

threshold based on the average plus 10 times the standard deviation of %human in the ‘Con’ 

sample for two reasons. Firstly, this threshold was just above the critical value of %human 
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where no spots exceeding it in the ‘Nor’ and ‘Exp’ samples (Supplementary Figure 2, the 

third column). Secondly, when applying this threshold, the classified spots with human cells 

in the ‘Exp’ sample displayed a histological pattern suitable for comparison in the following 

cell type matching analysis.  

The number of human transcripts was only observable in ‘Exp’ sample compared to 

the others (Figure 1b, scale of 0-100 transcript number, the third column), although low 

number of human transcripts were also found in the ‘Nor’ and ‘Con’ samples 

(Supplementary Figure 2). Given that the ‘Nor’ and ‘Con’ samples were not administered 

human cells, the human transcripts detected in the samples could be considered as false 

positives. However, as the false positive thresholding was effective, the distribution 

of %human on ST could be considered as distribution of administered hMSC (Figure 1c, the 

fourth column).  

 

Clustering analysis identified administered hMSCs in the lung tissue 

 As a result of spatial clustering analysis based on mouse gene expression, 9 

clusters were identified according to the gene expression patterns (Figure 2a). Among them, 

cluster 5 showed significantly higher %human than others (Figure 2b). In addition, spots of 

the cluster 5 were rarely appeared in ‘Nor’ and ‘Con’ samples (Figure 2c). It was remarkable 

that even if human genes were excluded when performing spatial clustering analysis, 

significantly higher number of human transcripts were concentrated on a single cluster. Top 

20 spatially enriched mouse genes in the cluster 5 implied the occurrence of immune 

response, collagen-containing extracellular matrix (ECM), and peptidase activity (Figure 2d).  

 Differentially expressed genes (DEGs) between ‘Con’ and ‘Exp’ were obtained. 

Although we included all genes from human and mouse, top 6 DEGs were all mouse genes 

(Supplementary Figure 4-6). To further comprehend genes spatially associated with the 

hMSC distribution, the spatially associated genes with %human were explored in the ‘Exp’ 

sample (Figure 3a and 3b for positively and negatively correlative genes, respectively). In 

this analysis, six genes were human genes among top 20 associated genes. To assess 
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molecular process of lung fibrosis in the ‘Exp’ sample, we selected positively spatially 

correlated mouse genes in the top 20 spatially associated genes and performed GO analysis 

with them. The top biological pathway was ‘transmembrane receptor protein serine/threonine 

kinase signaling pathway’ (Figure 3c). Also, there were overlapping mouse genes between 

top 20 spatially enriched genes in the spatial cluster 5 and the spatially associated genes: 

Lcn2 and Col4a1 (Figure 2-3).  

 

Cell type population of lung fibrosis model associated with hMSC treatment 

 After preparing a single cell RNA sequencing (scRNA-seq) reference of mouse lung 

(GSE124872), cellular level deconvolution was performed on the ‘Exp’ sample using 

CellDART [11] (Figure 4a). Spearman correlation between human transcripts and cell types 

of the treated lung tissue was calculated (Figure 4b). As a result, endothelial cells and 

epithelial cells were the most and the least associated cell type with %human, respectively 

(Fib. 4b). It was well concurred with the fact that the migration of injected cells into lungs 

were thought to be physically trapped in narrow micro-vessels of the alveoli [12].  

 We defined the ‘is_endothelial’ variable to indicate whether a spot consists of 

endothelial cells in the ‘Exp’ sample, using a threshold of the average plus one standard 

deviation of the CellDART score for endothelial cells. We then obtained DEGs in the same 

manner as the prior DEG analysis, comparing ‘is_endothelial’ spots with and without the 

‘is_human’ designation. As a result, only Apoe, Col1a1, and Hnrnpab significantly appeared 

(adjusted p-value < 0.05) in spots with low human transcripts. Especially, Apoe and Col1a1 

(activated fibroblast marker) genes are known to be situated in stromal regions surrounding 

blood vessels [9b]. In contrast, mt-Co2, Lcn2, Gm42418, Chil1, Scd1, mt-Nd1, and mt-Nd2, 

along with 43 human genes, were significantly present (adjusted p-value < 0.05) in the spots 

with high human transcripts. Interestingly, Lcn2 found in the former two analyses also 

appeared in this analysis, supporting the overall conclusion. 
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Discussion 

 In this paper, we could find the following three discoveries. First, RNA transcripts 

originating from different genomes could be discriminated and the spatial distribution of them 

could be acquired. Second, significantly associated genes with the human RNA transcripts 

can be obtained by spatial clustering analysis, DEG analysis, and spatially associated genes 

with %human. Lastly, the injected human stem cells displayed a strong association with 

endothelial cells, while showing an inverse association with epithelial cells. 

The market for therapeutic drugs containing nucleic acids is expanding, with 

numerous drugs currently in development. Clinical trials for stem cells [13], CAR-T [14], and 

exosomes containing nucleic acids [15] have been conducted. Nonetheless, there have 

been reports of challenges in evaluating the molecular mechanisms of these drugs 

particularly interacting with cells in target tissues in preclinical studies. As a result, there is an 

urgent need for the assessment methods for these drugs. Earlier, a method to identify 

molecular markers spatially associated with an injected drug based on ST was developed 

[9b]. Using this method, markers related to enhanced permeability and retention (EPR) were 

identified and it can be applied to various therapeutic agents that are labeled with fluorescent 

dyes. Nonetheless, using dyes to label therapeutics has several drawbacks, including 

failures to label fluorescent dyes, alteration of properties of drugs, and the possibility that the 

dyes may detach or disintegrate [16]. It also holds for the widely used methods to evaluate 

cell therapeutic agents by using tracer labeling. 

This study introduced the spatial mapping of exogenous nucleic acids by using ST in 

a label-free manner. Previous studies have attempted to map RNA transcripts from different 

species in applications such as xenografts [17], host-microbiome mapping [18], host-virus 

mapping [19], and the identification of engineered oligonucleotides [20]. Although these 

studies demonstrated successful analysis on mixed organisms, they did not employ this 

separated mapping technique to identify the spatial distribution of cell therapeutics in tissues 

or estimate their mode of action. In addition, our method can be applied to cell therapeutic 
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agents with the same origin as the host when introducing transfection of genes that do not 

exist in the host [21]. Our proposed approach has the potential to expand the application of 

ST for spatial analysis of therapeutics containing exogenous nucleic acids. By using this 

approach, we can gain a more comprehensive understanding of the mechanisms underlying 

the therapeutic effects of these agents, which can lead to critical insights for optimizing cell 

therapy treatments for various diseases. 

Apart from simple distribution analysis, spatial transcriptomics analysis of stem cell 

treatment in our study can reveal the transcriptome-level effects on lung fibrosis tissue. The 

injected human stem cells showed the upregulation of several genes of hemoglobin genes 

including Hba-a1, Hba-a2, Hbb-bs, and Hbb-bt, which were upregulated in ‘Exp’ when 

compared with ‘Con’ group (Supplementary Figure 4, 6). In addition, the ‘Exp’ group 

showed downregulated ‘collagen-containing extracelluar matrix’ and ‘humoral immune 

response’ genes (e.g., Bpifa1 [22]) when compared with ‘Con’ (Figure 2, Supplementary 

Figure 4-5). The molecular changes observed in the ‘Exp’ group were similar to those 

identified when comparing the ‘Nor’ group with the ‘Con’ group (e.g., Hba-a1, Hba-a2, Hbb-

bs, and Hbb-bt) (Supplementary Figure 7-8), which supports the molecular changes were 

presumed to be the effect of the injected human cells. The comparison of groups at the spot 

level has limitations because the analysis is only conducted at a single time point after the 

administration of stem cells. To understand the mechanisms of stem cells at the whole 

transcriptome level, further experiments in addition to the in-tissue level distribution analysis 

is needed. This requires using replicate samples and multiple time points. 

 Several challenges should be noted to use spatial analysis of administered cells 

using ST. The analytic process presented here was dependent on less significant false 

positive human transcripts in ‘Nor’ and ‘Con’. The occurrence of false positive human 

transcripts came from the homology between human and mouse. Also, false negative human 

transcripts should be addressed. In the top 20 spatially associated genes with human 

transcripts in the ‘Exp’ sample, VIM and Vim appeared (Figure 3a). Considering VIM is a 

mesenchymal stem cell-associated gene [23], it is highly probable that Vim counts were 
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falsely classified mouse transcripts. To resolve the problems presented here, a possible 

solution is to adopt long-read sequencing to fully manipulate the genetic sequence 

differences. Additionally, another possible method is to develop computational algorithms 

that can manipulate spatial proximity [24], histological morphology [25], previous datasets 

[11, 26] or other domain knowledge to credibly eliminate or modify false transcripts.  

Our study successfully demonstrated the ability of ST to map administered cell 

therapeutics without the need for fluorescent labeling. As a key result, we identified genes 

associated with human RNA transcripts and showed the spatial distribution of injected 

human stem cells in lung fibrosis tissue, even though further experiments are needed to fully 

understand the mechanisms of stem cells in terms of cellular interaction in the target tissue 

at the whole transcriptome level. Overall, the study highlights the potential of ST for spatial 

analysis of therapeutics containing exogenous nucleic acids and the need for further 

research to optimize this approach. 
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Methods 

Animal experiments and tissue acquisition 

 The animal experiments for this study were approved by Seoul National University 

Bundang Hospital with the IACUC approval code of BA-2211-355-002. Normal bone marrow 

derived hMSC was prepared from Lonza™. Then, three C57BL/6 male mice (9 weeks old) 

were prepared: a normal mouse (‘Nor’), a mouse with lung fibrosis as a control (‘Con’), and a 

mouse with lung fibrosis and hMSC injection through mouse tail veins as an experimental 

group (‘Exp’). Lung fibrosis was induced in both the control ('Con') and experimental ('Exp') 

groups by administering bleomycin for a period of 3 weeks before sacrifice. Then, optimal 

cutting temperature (OCT) blocks (Scigen 4586, USA) were made according to the Visium 

Spatial Protocols – Tissue Preparation Guide (Document CG000240). The OCT block for 

‘Exp’ was made 6 hr after human stem cell injection. After that, two tissue slices were 

prepared for each OCT mold of a group to acquire an H&E-stained tissue slice and a fresh 

frozen tissue slice for Visium ST library. 

 

ST library acquisition 

 The tissue sections were fixed, stained, and permeabilized, consulting the Visium 

Spatial Protocols – Spatial Gene Expression Imaging Guide (Document CG000241), along 

with tissue optimization (TO) steps. The mRNAs present in the tissues were captured 

through poly-A tails, and subsequent cDNAs were barcoded and amplified via poly chain 

reaction (PCR) to obtain enough cDNAs for reconstructing libraries. Quantitative PCR 

(qPCR) and the Agilent Technologies 4200 TapeStation were used to measure and assess 

the quality of the libraries, respectively. Finally, the libraries were sequenced using Illumina 

HiSeq platform, following the instructions provided in the user guide. 

In addition, SpaceRanger (ver. 2.0.1) mkref was used to merge the representative 

human reference, GRCh38, and the representative mouse reference, mm10, followed by the 

execution of SpaceRanger count for each sample to produce the processed ST library. 
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Acquisition of DEGs related to hMSC distribution 

 Data integration was performed with FindIntegrationAnchors and IntegrateData in 

Seurat (ver. 4.3.0). Then, spatial clustering analysis was performed after eliminating human 

genes from the integrated Seurat object. The elimination process was thought to be 

meaningful not to make biases toward ‘Exp’ which only contained human transcripts. 

However, the elimination process was not made in the other analyses. The top 20 spatially 

enriched genes (adjusted p value < 0.05; log FC ordered) in a specific cluster were obtained 

from the Wilcoxon Rank Sum test by using FindAllMarkers of Seurat and explored in gene 

ontology (GO) plot with clusterProfiler::enrichGO (ver. 4.6.2) in R.  

 To perform comparison analysis among samples, differentially expressed genes 

(DEGs) were acquired from the Wilcoxon Rank Sum test by using FindAllMakers of Seurat. 

Then, top 20 DEGs (adjusted p value < 0.05; log FC ordered) were explored in GO analysis. 

  To obtain spatially associated genes with the %human among total transcripts, the 

spearman correlation coefficient between %human and the scaled expression of each gene 

was calculated in the ‘Exp’ sample. After that, top 20 spatially associated genes (adjusted p 

value < 0.05; spearman correlation ordered) were explored in GO analysis. 

 

CellDART 

To identify spatial distributions of cell types, cell type inference by domain adaptation 

of single-cell and spatial transcriptomic data (CellDART) was performed [11]. The single cell 

RNA sequencing (scRNA-seq) reference was created by utilizing a mouse lung scRNA-seq 

reference (GSE124872). Only focusing on the ‘Exp’ sample, CellDART was performed to 

identify mouse cell types associated with human transcripts. 

 

Statistics 

 R (ver 4.0.5) and Python (ver 3.7.12) were used as programming languages. In 

addition, Seurat (ver 4.3.0), scanpy (ver 1.9.1), and SpaceRanger (ver 2.0.1) were used. For 
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reference for SpaceRanger, GRCh38 (Homo sapiens) and mm10 (Mus musculus) were 

applied. Differentially expressed genes (DEGs) were explored by sorting against fold change 

(FC) values for all genes with adjusted p value less than 0.05. When drawing gene ontology 

(GO) plots, 20 host mouse genes were selected and analyzed unless otherwise specified. 

The parameters were set to default unless otherwise specified in Table 1. 
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Figure Legends  

 

Figure 1 | Preparation of lung tissues from normal mouse (‘Nor’), lung fibrosis model (‘Con’), 

and lung fibrosis model treated with hMSC cells (‘Exp’). a, Schematic illustration of ST library 

preparation. Lung fibrosis and hMSC injection were also represented. b, Number of 

transcripts according to sample and organism. Here, transcripts indicated not raw gene 

counts, but normalized gene counts. The results for ‘Nor’, ‘Con’, and ‘Exp’ were represented 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.31.542821doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.31.542821


 18 

from top to bottom. The last column of the image, 'spots_with_human_cells’, showed a 

binary indicator that was yellow only when %human on a spot is greater than the average 

plus 10 standard deviations of %human of the ‘Con’ sample. Spatial mapping of 

‘spots_with_human_cells’ well represented the existence of injected human stem cells in the 

‘Exp’ sample. 
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Figure 2 | Spatial clustering analysis. a, DimPlot (up) and SpatialDimplot (down) of three 

samples according to clustering labels. b, VlnPlot for %human according to clustering labels. 

Interestingly, cluster 5 showed a significantly higher number of human transcripts than the 

others. c, The population of clustering labels for each sample. The cluster 5 rarely appeared 

in ‘Nor’ and ‘Con’ samples. d, GO plot for top 20 spatially enriched genes in the cluster 5 

(adjuster p value < 0.05; log FC ordered) including Lcn2 (highest log FC), Msln, Chil3, C3, 

Upk3b, Spp1, Col4a1, Serpina3n, Wfdc21, Col3a1, Wfdc17, Gm13889, Chil1, Mgp, Sftpd, 

Slpi, Ctsc, Fmo2, Scd1, and Napsa (in order).  
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Figure 3 | Spatially associated genes with %human in the ‘Exp’ sample. The most (a) and 

the least (b) 20 spatially associated genes to %human. c, GO analysis for the mouse genes 

among top 20 spatially associated genes to %human. 
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Figure 4 | CellDART results. a, Spatial mapping of the proportion of 6 cell types in the ‘Exp’ 

sample, along with human transcripts representation. b, A correlation coefficient matrix 

comparing the cell type proportions, along with the normalized %human. Here, spearman 

correlation coefficient was used. As a result, endothelial cells and epithelial cells were the 

most and the least associated cell type with %human, respectively.  

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.31.542821doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.31.542821


 22 

Tables 

 

Table 1. Specified parameter values for analyses. 

Function Parameter Value 

Seurat in R 

FindIntegrationAnchors dims 1:50 

IntegrateData dims 1:50 

FindNeighbors dims 1:30 

FindClusters resolution 0.2 

RunUMAP dims 1:30 

scanpy in Python 

scanpy.tl.pca svd_solver arpack 

scanpy.pp.neighbors n_neighbors 10 

scanpy.pp.neighbors n_pcs 40 

scanpy.tl.leiden resolution 0.5 

scanpy.pl.rank_genes_groups n_genes 40 
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