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MOTIVATION Enhancing the resolution of barcode-based spatial transcriptomics can deepen our under-
standing of biological phenomena using both existing and newly generated data. We propose a method,
SuperST, that aims to overcome the limitations of spatially resolved transcriptomics (ST) methods that rely
on segmentation and/or exhibit parameter-dependent performance. SuperST utilizes an end-to-end convo-
lutional neural network and is robust to parameters such as image size, learning epochs, or learning rate. To
enhance usability, we integrate Visium-specific diffusion features and offer user-friendly Python-based im-
plementations.
SUMMARY
Spatially resolved transcriptomics (ST) has revolutionized the field of biology by providing a powerful tool for
analyzing gene expression in situ. However, current ST methods, particularly barcode-based methods, have
limitations in reconstructing high-resolution images from barcodes sparsely distributed in slides. Here, we
present SuperST, an algorithm that enables the reconstruction of dense matrices (higher-resolution and
non-zero-inflated matrices) from low-resolution ST libraries. SuperST is based on deep image prior, which
reconstructs spatial gene expression patterns as image matrices. Compared with previous methods,
SuperST generated output images that more closely resembled immunofluorescence images for given
gene expression maps. Furthermore, we demonstrated how one can combine images created by SuperST
with computer vision algorithms. In this context, we proposed a method for extracting features from the im-
ages, which can aid in spatial clustering of genes. By providing a dense matrix for each gene in situ, SuperST
can successfully address the resolution and zero-inflation issue.
INTRODUCTION

Spatially resolved transcriptomics (ST) has become an emerging

technology in biology. There are currently two types of ST

methods: barcode-based ST and image-based ST.1 Barcode-

based ST, also known as spot-based ST, such as 10x Visium,2

differs from image-based ST1 in that it provides whole gene

expression data and typically involves thousands of spots. How-
Cell Reports Methods 5, 100937, Janu
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ever, there are tens of cells in a spot in the barcode-based ST

and empty spaces outside the barcodes, making it difficult to

interpret the underlying biology and cellular-level phenomena.

Additionally, RNA diffusion in tissues during experiments limits

the resolution of ST, particularly in the case of barcode-based

ST. The reported velocities of moving RNAs or RNA-protein

complexes range from 0.65 to 1.5 mm/s,3–6 depending on the tis-

sues, conditions, and molecules of interest.
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Figure 1. The design of SuperST

(A) The schematic representation of SuperST.

Here, a, b, c, d, e, and f represent input_1: an input

H&E image, a conceptual down-sampling unit,

concatenate, a conceptual up-sampling unit, a

Gaussian smoothing kernel, and the output of

U-Net, respectively. Note that while DIP is a

method for image restoration using neural net-

works, U-Net refers to a specific type of neural

network architecture that is often utilized to

implement the DIP method. The algorithm runs

with Fq(z)/ Xout by num_iter times of execution at

first for updating U-Net and oncewith Fq(z)/ Xhigh

for predicting high-resolution images. ‘‘F’’ denotes

a conceptual function that links the CNN archi-

tectures (b) to the output (f). The matching parts in

the top and bottom images are shown in the same

color. The detailed information can be found in the

STAR Methods section.

(B) The comparison of conventional spatial feature

plots and high-resolution images made by

SuperST from a publicly available breast cancer

dataset. The pixels in high-resolution images

darker than 95 percentiles of each image are not

shown.
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To date, several algorithms have been developed to improve

the resolution of ST. BayesSpace used the Bayesian approach

to predict sub-spot gene expression, considering the structure

of neighboring spots.7 The spatially aware dimension reduction

method (SpatialPCA) extracted a low-dimensional representa-

tion using probabilistic principal component analysis (PCA) and

predicted gene expression in unmeasured spots in a spatially

aware imputation manner.8 Deep spatial data fusion, also known

as XFuse, was a histology-dependent super-resolution image

generation algorithm using a deep-generative model for Visium

ST.9 A recent algorithm, tumor edge structure and lymphocyte

multi-level annotation (TESLA), involves determining neighbor-

hood relationships from H&E images and imputing super-pixels

to generate super-resolution gene expression images.10 Another

recent algorithm, iStar, uses a pre-trained hierarchical vision

transformer (HViT) to extract tissue features at multiple scales

from histology images, which are then used by a feedforward

neural network to predict super-pixel-level gene expressions.11
2 Cell Reports Methods 5, 100937, January 27, 2025
There have also been various attempts

to assume gene expression in unknown

regions by introducing well-known prob-

abilistic models, such as Gaussian distri-

bution, negative binomial distribution,

and Poisson distribution.

We defined a dense matrix as a matrix

with a resolution as high as a regular im-

age and appropriately improved from

zero-inflated data. A complete dense

matrix would be a stack of two-dimen-

sional (2D) images, each representing a

different gene map. Due to the limited

performance of the previous methods

for enhancing ST resolution, reconstruct-
ing dense image matrices from barcode-based data is still

challenging. However, by treating the ST data as dense image

matrices, it is possible to apply image processing methods

such as segmentation,12 registration, contouring, transforma-

tion, and integration13,14 for gene expression data. This

approach allows us to effectively employ ST data beyond just

obtaining high-resolution data, advancing the field of ST and

enhancing our understanding of gene expression in situ. In this

regard, we proposed and validated an algorithm, SuperST, to

generate dense matrices from low-resolution Visium ST libraries

by applying deep image prior (DIP).

RESULTS

Dense image matrices of gene expression from ST data
by DIP
SuperSTwas based on an exemplaryDIP algorithm15 (Figures 1A

andS1).Briefly,DIP is adeep learningapproach that reconstructs
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high-quality images from low-quality inputs, such as noisy or

blurred images, without the need for pre-labeled training data.

However, SuperST can generate the output image even when a

random matrix is used as input, although this will impact the

performance of SuperST (Figure S2). It uses an untrained

neural network, in this case, U-Net,16 to constrain the image

reconstruction process and utilize the intrinsic capability of the

network to capture the underlying latent structure of the image

data, creating high-resolution images. For DIP, there were two

modules in the algorithm: down-sampling (colored in orange)

and up-sampling (colored in blue), shown in Figure 1A. The

input for this process was the histology image instead of a noisy

image, and the output was generated through U-Net. Specif-

ically, while the image size can be easily modified in SuperST,

we designated the size of the gene expression map to be a

2563 256 matrix for each gene. We resized the histology image,

the input for U-Net, to 2563 256 and fed it into the U-Net to pre-

dict a set of gene expressionmatrices of specific genes.We then

applied a convolution term of Gaussian smoothing to account for

the diffusion of mRNA. This term considered the diffusion of

mRNA expression in the periphery for each position, which was

counted as gene expression for each position of the spot. In Vis-

ium, the extent of mRNA diffusion can differ, so SuperST allows

for adjusting the size of the Gaussian kernel or even omitting

this step altogether. In our code, demask_image_t indicates

SuperST images assuming zero diffusion, while demask_ima-

ge_t_gmeansSuperST imageswith amodifiableGaussiankernel

size specified by kernel_size. The output 256 3 256 image was

then masked only with pixels corresponding to the central posi-

tion of each spot, and a loss function was created with the differ-

ence between the value of each masked pixel and the corre-

sponding gene expression value for each spot. To minimize this

loss function, the weight of the neural network model was itera-

tively updated. As a result, the dense matrices for the gene

expression were generated, followed by the masking process.

The example of the human breast cancer samples17 is presented

in Figure 1B.

Optimal parameters for SuperST
To evaluate the performance of SuperST in predicting the image

matrix of specific gene expression data, we compared the

output images obtained from SuperST with immunofluores-

cence (IF) images. For the comparisons, we selected genes re-

ported in a study for their notable correlation between RNA

and protein levels: PTPRC (Spearman = 0.79, p = 2.08E�06),

CD3G (Spearman = 0.74, p = 0.01), and Pecam1 (Spearman =

0.73, p = 1.29E�05).18 Rbfox3, well known as a mature neuron

marker,19 was also considered in our analysis, as it is expected

to show a strong correlation between its RNA and protein

abundance.

We assessed the correspondence between the outputs

of SuperST generated from gene expression images and the

IF images obtained from tissues (Figure 2). This was achieved

by evaluating the pixel-wise correlation between the two im-

ages. When exploring image similarity metrics including Pear-

son correlation coefficient (pearson) and mutual information

(mutual), the variation of overall coefficients decreased when

the number of iterations (num_iter) increased, but the similarity
tended to decrease further beyond a certain number of itera-

tions (Figure S3). This could be due to the overfitting of

SuperST, as can be seen in the case where num_iter equals

1,024 (Figure S4). However, with a small num_iter, the output

image did not accurately represent the input gene expression.

For example, S100a9, a well-known marker gene for neutro-

phils, was expressed in the inner necrotic core of the 4T1 tu-

mor,20 as revealed by the outcomes of a cell type decomposi-

tion algorithm21 (Figure S5A). When num_iter was less than

128, the output images did not show the predominant S100a9

expression in the core region, compared with the conventional

spatial mapping (Figure S5B). Based on these findings, the nu-

m_iter parameter was chosen within a range of 128–512.

Notably, choosing the num_iter parameter is crucial. Setting it

too high makes images overly reflect gene expression sparsity,

while setting it too low underestimates the gene expression. An

optimal range of the num_iter ensures that SuperST performs

best, and determining the appropriate range is not challenging

in a practical sense. The performance of SuperST was further

examined across varying output dimensions in multiples of

two required for the U-Net model. Analogous to the observa-

tions made with a 256 3 256 output size, the 128 3 128 and

512 3 512 dimensions exhibited a comparable overfitting ten-

dency as the num_iter approached 1,024 (Figures S3E–S3L).

Additionally, consistent with previous findings, a local maximum

in Pearson correlation coefficients was identified within the nu-

m_iter range of 128–512, aligning with the patterns previously

delineated.

Comparison with other methods
As previousmethods to provide high-resolution imagematrices

from ST data, XFuse, TESLA, and iStar were conducted for four

different datasets, along with SuperST and conventional visual-

ization (Figure 2B). It was noteworthy that the output images of

the super-resolution algorithms better reflected the gene

expression profiles than sparse Visium data, which poorly ex-

hibited continuous gene expression due to the nature of zero-

inflated data. SuperST showed the highest Pearson correlation

coefficients between the output images and the IF images.

XFuse and TESLA exhibited inappropriately contoured outputs

in some cases (Figure 2B, Pecam1 for XFuse and Rbfox3 for

TESLA). Also, there were no available outputs for certain genes

(e.g., CD3G) when running XFuse in a default setting, while

SuperST can reliably generate dense matrices for all genes

without being greatly constrained by parameters such as

image size, learning epochs, or learning rate. Moreover, dis-

crepancies were identified between the output images of

XFuse, TESLA, or iStar and the IF images. For example, in the

Mouse 4T1 sample, the inner necrotic section and the outer

stromal compartment in the anti-Pecam1 antibody IF image

were more accurately depicted in SuperST when compared

with XFuse, TESLA, and iStar.

Application of computer vision algorithms with SuperST
One advantage of the dense matrix resulting from applying

SuperST is that it can be utilized by various computer vision al-

gorithms that are difficult to use on traditional ST data. Typically,

these algorithms are designed to process pixel-based images,
Cell Reports Methods 5, 100937, January 27, 2025 3



Figure 2. Comparison between conven-

tional visualization, SuperST, XFuse,

TESLA, and iStar with the IF image

(A) The acquisition of Visium ST library for Mouse

4T1 with a recommended tissue preparation pro-

tocol, followed by the primary and the fluorescent

secondary antibody treatment. H&E, ST, and FL

refer to the H&E-stained tissue, the tissue used for

acquiring the Visium ST library, and the tissue

utilized for fluorescence imaging, respectively.

(B) Each Pearson correlation coefficient between

IF and each super-resolution algorithm (SuperST,

XFuse, TESLA, and iStar) output was represented

for Mouse Brain (Rbfox3), Mouse 4T1 (Pecam1),

Human Ovarian (PTPRC), and Human Ductal

(CD3G). Conv, indicating the conventional visual-

ization of ST data (negative control), was also

compared with IF. Super-resolution algorithms

outperformed the conventional visualization in

most cases. Also, the correlation coefficient was

found to be the highest in SuperST compared with

the other algorithms.
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which differ from the nature of ST spots. We combined VGG16,

one of the pre-trained convolutional neural network (CNN)

models, with SuperST to extract image features from gene

expression data. As a result, this approach enabled the extrac-
4 Cell Reports Methods 5, 100937, January 27, 2025
tion of 512D feature vectors from each

super-resolution gene expression image,

the output of SuperST. Utilizing these

feature vectors, distinct clusters of genes

exhibiting similar spatial expression

patterns were identified through the

application of K-means clustering (K =

3). This method effectively grouped

genes based on their expression profiles,

highlighting the spatial distribution and

co-expression patterns within the tissue

samples (Figure 3). In other words, the

output of SuperST and the pre-trained

CNN model can be utilized to obtain

gene sets with similar spatial expression

characteristics based on the pattern of

spatial distribution of each gene (i.e.,

spatially variable gene sets). The score

maps created by three gene clusters

were associated with cancer cell division,

fibrous tissue, and neutrophil chemo-

taxis, respectively (Figure 3B). This

observation aligns with three distinct

areas within the 4T1 solid tumor: regions

densely enrichedwith active cancer cells,

peripheral regions of the tumor with

abundant fibroblasts, and necrotic tis-

sues, where neutrophils mainly accumu-

late (Figure 3C).20 Similarly, the results

of spot clustering obtained based on

gene expression showed similarity to

the score maps in terms of the number
of clusters and their spatial distribution (Figures S5C and S5D).

Furthermore, the clustering based on pixels was shown, demon-

strating the reliance of SuperST on num_iter as demonstrated

earlier. (Figure S5E).



Figure 3. The spatial gene clustering with

SuperST and pre-trained CNN algorithm

(A) The resultant three gene clusters (i.e., clus-

ter_0, cluster_1, and cluster_2) derived from

SuperST and VGG16, a representative pre-trained

CNN algorithm. Firstly, SuperST was performed

for spatially variable genes (SVGs) derived from

highly variable genes (HVGs). Secondly, features

were extracted from the images generated by

SuperST using VGG16. Then, the 512D features

were clustered using K means clustering (K = 3).

Following this, each gene list from a cluster was

scored. Consequently, three specific zones were

identified, corresponding to the cancer-rich re-

gion, the fibrotic tissue, and the necrotic core.

(B) GeneOntology (GO) plots corresponding to the

spatial gene clusters. Each GO plot corresponds

to the spatial feature plot directly above it in (A).

(C) The histological annotation made by a pathol-

ogist. The tumor (red) is relatively homogeneous

and solidly distributed, with a thin layer of stroma

(green) observed around it. The central part of the

tumor (yellow) differs from the surrounding area

because the tissue has fallen off the slide, and it is

presumed to be a part of the tumor that has un-

dergone necrosis.

(D) The distribution of SVGs in a 2D projection,

displaying distinct borders between gene clusters.
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DISCUSSION

The SuperST algorithm proposed in this study aims to address

the challenge of reconstructing dense image matrices from bar-

code-based ST data by predicting gene expression data as im-

ages using the DIP algorithm. The study demonstrated that DIP

produced high-resolution image matrices of gene expression

from low-resolution ST data. The study evaluated the perfor-

mance of SuperST by comparing the output images obtained

fromSuperST with IF images and assessing the correspondence

between both images using image similarity metrics. The results

showed that SuperST generated output images that were highly

correlated with IF images.

While interpolation assumes a specific spatial distribution

for gene expression, super-resolution algorithms, including

SuperST, do not rely on such assumptions. SuperST can

generate varying output images in a probabilistic way, and it

can also provide clues for optimal parameters through semi-

parameter independence (i.e., existence of a range of parame-

ters that result in constantly optimal outputs). After searching

for the best parameters, we conducted a comparison between
Cell Reports M
the SuperST results and IF images to

examine the molecular expression in

the tissue. It is noteworthy that IF de-

tects proteins that are not identical to

mRNA transcripts of ST.22,23 Therefore,

we concentrated on genes that are

recognized for their strong correlations

between RNA and protein levels. As a

result, SuperST exhibited a stronger

correlation with the spatial patterns
observed in IF, surpassing other methods (i.e., XFuse, TESLA,

and iStar).

We have developed SuperST as an algorithm designed to

provide high resolution and broad gene coverage simulta-

neously. It provides a way to overcome the limitations of bar-

code-based ST, which can only collect data from specified po-

sitions and struggles to interpret empty spaces. Image-based

methods such as Xenium and multiplexed error-robust FISH

(MERFISH) inherently offer high resolution, thus diminishing

the need for super-resolution algorithms. However, these tech-

niques do not adequately encompass the entire transcriptome

with respect to gene coverage. Even as the coverage of gene

panels expands, challenges persist regarding the efficiency of

probe hybridization, which can vary by gene, inaccurate cell

segmentation algorithm, and batch-to-batch consistency.24

For methods like Stereo-seq and Seq-scope, although they

provide higher resolution compared with Visium, the diffusion

issue inherent to the approaches significantly impacts their per-

formance, potentially necessitating the use of super-resolution

imaging. The use of SuperST proposes several significant impli-

cations for ST. For example, various spatial omics modalities,
ethods 5, 100937, January 27, 2025 5
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such as IF images, can be aligned with ST data by effortlessly

improving the ST data’s resolution using SuperST to closely

match the corresponding omics data. Also, SuperST showed

the potential to be applied in imaging analysis workflows, as

can be seen in the feature extraction for spatial gene clustering

by using a pre-trained CNN architecture (i.e., VGG16). In addi-

tion, the major differences compared to previously proposed

algorithms include the capability to address the diffusion

problems in ST, the ability to produce an appropriate mixture

of input image and gene expression by adjusting num_iter,

semi-parameter independence, and the design as an end-to-

end AI algorithm, which facilitates ease of use and robust

performance.

Although we validated SuperST using spatially matched IF

data, further validation with large-scale, multi-molecular expres-

sion studies will enhance the reliability and applicability of this

algorithm. Given these considerations, to validate the perfor-

mance of SuperST transcriptome-wide, we conducted an addi-

tional study using paired Visium-Xenium data from a human pa-

tient with breast cancer (Figure S6). Following the benchmarking

guidelines outlined in the iStar literature, we quantified the

correspondence with Xenium using the structural similarity

index measure (SSIM) instead of Pearson correlation and root-

mean-square error (RMSE) and reconstructed pseudo-Visium

gene expression based on Xenium. The results demonstrated

that SuperST outperforms conventional visualization, XFuse,

TESLA, and iStar. Notably, when XFuse was executed, there

was no result of APOBEC3B, and the performance of XFuse

and iStar showed SSIM values at the level of H&E images, which

are unrelated to gene expression. The difficulty of thesemethods

seems to stem from the challenge of applying appropriate hyper-

parameters that can adapt to the specific characteristics of each

dataset. In this aspect, the advantage of SuperST, which can

achieve robust performance through semi-parameter indepen-

dence, is highlighted.

In conclusion, our results demonstrate that SuperST could

generate dense image matrices with high-resolution information

from barcode-based ST data, outperforming existing methods.

Furthermore, the image data generated by SuperST could be

easily integrated with other spatial omics technologies, such as

proteomics and metabolomics, which could lead to a more

comprehensive understanding of complex biological systems.

Overall, SuperST displays great potential for advancing the field

of ST and expanding our understanding of gene expression

in situ.

Limitations of the study
The study also has a limitation that need to be considered. The

proposed algorithm requires key parameters for DIP, which

need to be optimized for generalization. It was discovered that

the number of iterations (num_iter) is crucial and needs to fall

within a specific range. However, it also needs to be customized

according to the characteristics of the data provided. Also, this

study focuses solely on num_iter for optimal SuperST perfor-

mance, but other factors like image size, kernel size, and sigma

value should be tuned for better performance. Despite these lim-

itations, the SuperST algorithm provides an easy-to-use applica-

tion with relatively robust performance.
6 Cell Reports Methods 5, 100937, January 27, 2025
RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will

be fulfilled by the lead contact, Hongyoon Choi (chy1000@snu.ac.kr).

Materials availability

The study did not produce any unique reagents.

Data and code availability

d The ST dataset generated for this study,Mouse 4T1, is available upon a

reasonable request from the lead contact. Otherwise, all the other data-

sets used in this study are publicly available and are listed in the key re-

sources table.

d The scripts produced for this study are available in our GitHub repository

(https://github.com/portrai-io/SuperST). An archival DOI is listed in the

key resources table.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat anti-PECAM1 primary antibody Invitrogen 14-0311-82, RRID: AB_467201

Alexa Fluor 647 conjugated goat

anti-rat IgG secondary antibody

Invitrogen A21247, RRID: AB_141778

Deposited data

Public human breast cancer Visium data17 Wu et al.17 https://doi.org/10.5281/zenodo.3957257

Mouse Brain Visium25 10x Genomics https://www.10xgenomics.com/resources/datasets

Mouse 4T1 Visium This paper Available upon a reasonable request from the lead contact

Human Ovarian Visium26 10x Genomics https://www.10xgenomics.com/resources/datasets

Human Ductal Visium27 10x Genomics https://www.10xgenomics.com/resources/datasets

Public human breast cancer paired

Visium-Xenium data28
Janesick et al.28 https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE243280

Experimental models: Cell lines

4T1 tumor cells ATCC N/A

Experimental models: Organisms/strains

A 6-week-old, female BALB/c mouse SNU, College of Medicine N/A

Software and algorithms

SuperST (GitHub) This paper https://github.com/portrai-io/SuperST

SuperST (Zenodo) This paper https://zenodo.org/records/14207705

XFuse Bergenstråhle et al.9 https://github.com/ludvb/xfuse

TESLA Hu et al.10 https://github.com/jianhuupenn/TESLA

iSTAR Zhang et al.11 https://github.com/daviddaiweizhang/istar
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Tissue slice preparation
The study used both public datasets and generated a new ST dataset (Mouse 4T1) from a 6-week-old, female BALB/cmouse bearing

a 4T1 tumor. The mouse was prepared by injecting 4T1 tumor cells, which had a passage number of 30–40 and were not genetically

modified, into its right thigh region. The tumor sample was collected and frozen 10 days after injection. Three tissue slices were ac-

quired from the tumor tissue.

Data acquisition
One slice was treated with rat anti-PECAM1 primary antibody (14-0311-82, Invitrogen) and Alexa Fluor 647 conjugated goat anti-rat

IgG secondary antibody (A21247, Invitrogen). The IF image was then obtained by observing it with confocal microscope (STELLARIS

5, Leicamicrosystems). Another slice was used for the H&E staining. The last slicewas treatedwithmethanol, frozen, cryo-sectioned,

and used to generate a block embedded in optical cutting temperature (OCT) compound (25608-930, VWR, USA) and the ST library.

The preparation of the ST library followed a recommended Visium protocol of 10x Genomics.

Ethics declaration
Animal experiments for this study were approved by the Woojung Bio IACUC of the Republic of Korea with the approval code of

IACUC2001-003.

METHOD DETAILS

Datasets
A public breast cancer dataset was used to compare the results with and without SuperST.17 Three public datasets were additionally

utilized for the validation of SuperST. One dataset (Mouse Brain) was ‘Adult Mouse Brain Section 2 (Coronal)’ data publicly available

from 10x Genomics.25 The tissue in the dataset was treated with anti-GFAP antibody (glial fibrillary acidic protein, red) and anti-NeuN
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antibody (mature neuron marker, green) along with DAPI staining (blue). Also, two datasets provided by 10x Genomics including the

human ovarian cancer sample (Human Ovarian; CD45: Cy5 - red)26 and the human invasive ductal carcinoma sample (Human Ductal;

CD3: Alexa Fluor 647 - red)27 were used.

SuperST algorithm construction
SuperST generates a high-resolution image Xhigh from a low-resolution expression matrix Xlow by employing U-Net to realize DIP. It

applies down-sampling and up-sampling modules, with an adjustable Gaussian smoothing kernel to account for mRNA diffusion in

the ST data. The following equation illustrates the mechanism of SuperST.

Xout or Xhigh = FqðZÞ
Here, Z ˛ ℝC’ 3 H’ 3 W’ is C0 numbers of CNN architectures of height H0 and width W0 learned from X0. Xout or Xhigh ˛ ℝ3 3 H 3 W =

ℝ3 3 256 3 256 is the image derived from Z. q is a network parameter and F is a function made up of deep learning network. Also, the

input image X0 is a histology image, either ‘spatial/tissue_hires_image.png‘ or ‘spatial/tissue_lowres_image.png,‘ resized to

2563 256 for U-Net processing. Alternatively, random images may also be used. After generating an output high-resolution image

Xout from F, it is converted to low-resolutionmatrix Xm to be compared with the low-resolution ST gene expressionmatrix of a gene,

Xlow. Here, q is determined to minimize the cost function of E between Xm and Xlow.

Parameters
DIP, originally utilizing overfitting, does not exhibit stable performance with an increase in the number of epochs (‘num_iter’) compared

with conventional deep learning. Instead, it producesoutput images that converge to the input geneexpression. Therefore, adjusting the

num_iter in the SuperST algorithm using DIP is quite crucial, and the rate at which SuperST converges to the input gene expression can

varydependingon thegenesand tissue types, inevitably leading todifferent optimalnum_iter values.However, it’s important tonote that

during the transition fromthe input image to the inputgeneexpression,SuperSTdemonstratesan interval (128–512)of stableandoptimal

performance, which is relatively consistent across different samples and can even be easily determined through visual inspection.

Computer vision analysis
SuperST was used to define distinct tissue regions by combining with a pre-trained deep learning algorithm, VGG16, which recog-

nizes textural patterns from images. TheMouse 4T1 data was used to apply SuperST. Firstly, 1,000 highly variable genes (HVGs) were

identified using scanpy.pp.highly_variable_genes Python package. Then, 233 spatially variable genes (SVGs) were isolated from

HVGs by using squidpy.gr.sepal Python package. In the following step, SuperST leverages DIP to generate dense image matrices

from the low-resolution spatial expression of the 233 SVGs with num_iter of 400. The final high-resolution images were used to

extract 512D feature vectors for each gene via a pre-trained convolutional neural network model (VGG16). Subsequently, we apply

K-means clustering (K = 3) to these features to identify spatially and transcriptionally distinct tissue regions. Lastly, a gene score for

each spatial gene cluster was calculated using scanpy.tl.score_genes Python package.

QUANTIFICATION AND STATISTICAL ANALYSIS

Benchmarking
When performing SuperST for Mouse Brain (Rbfox3), Human Ovarian (PTPRC), and Human Ductal (CD3G), the input images were

derived by subtracting the fluorescent antibody channel from the given 3-channel images. Also, for Mouse 4T1 (Pecam1), the

H&E staining image was used as the input, representing the general use cases for SuperST. The inputs for XFuse and TESLA

were the same as those for SuperST. Also, XFuse was prepared in a default setting according to the literature,9 and the invcv+ image

was selected as the representative output image among the XFuse outputs (i.e., stdv,mean, and invcv+ images). In addition, TESLA

was run with apertureSize of 5, res of 3, and the first type of contouring algorithm of three. Lastly, the conventional visualization

method of Visium data was achieved by enlarging spot-wise expressions in a square form.

Evaluation
To validate the results, Pearson correlation coefficients and mutual information metrics were computed between SuperST outputs

and IF images, with each sample being assessed 20 times. Based on the correlation patterns across varying iteration counts, optimal

parameters were determined. Similar procedures were applied to other methods, analogous to SuperST.

Validation via xenium
After acquiring the paired Visium-Xenium public data for human breast cancer,28 we ran SuperST on 307 common genes between the

two spatial transcriptomics datasets and obtained 307 dense images of 256 3 256 dimension. Subsequently, we rotated the

SuperST results by about 90� and cropped them to map into the Xenium AnnData’s obs. We then generated the outputs of

SuperST as well as the conventional visualization, XFuse, TESLA, and iStar outcomes for the common genes, mapped them onto

Xenium, and calculated the SSIM values with Xenium-based pseudo-Visium gene expression image. Also, we compared the

SSIM values between each pair of methods, using Wilcoxon rank-sum test.
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